
Copyright (C) 2015 by Dragan Milicev

MODEL-DRIVEN DEVELOPMENT
WITH EXECUTABLE UML  

AND SOLOIST
Prof. Dr. Dragan Milićev	

University of Belgrade, School of Electrical Engineering, Dept. of Computing	

dmilicev@etf.rs, www.rcub.bg.ac.rs/~dmilicev	

!
Presentation for UMLChina, September 3rd, 2015

1

mailto:dmilicev@etf.rs
http://www.rcub.bg.ac.rs/~dmilicev

Copyright (C) 2015 by Dragan Milicev

OUTLINE
• Introduction (5’)	

• UML Schools: Models as Sketches or Blueprints vs. Executable Models (10’)	

• About SOLoist (5’)	

• Modeling Structure in SOLoist (15’)	

• Querying in SOLoist: OQL, Query Builder (10’)	

• Database Features in SOLoist: Optimizations, Performance, Scalability (5’)	

• Modeling Behavior in SOLoist: Operations/Methods, Commands, State Machines (15’)	

• Web GUI Development in SOLoist: Concepts, Principles, Library (20’)	

• Conclusions (5’)	

• Q&A (30’)

2

Copyright (C) 2015 by Dragan Milicev

INTRODUCTION
…of the speaker…	

• Full professor at University of Belgrade, School of Electrical Engineering,
Department of Computing (www.etf.rs)	

• Founder and CEO of SOL Software (www.sol.rs)	

• Fields of expertise: software engineering, model-based engineering, model-
driven development, UML, software architecture and design, business
process modeling, information systems, and real-time systems	

• Member of PCs of several premier international conferences on model-
based engineering: MODELS, ECMFA, and MODELSWARD	

• Member of the Editorial Board of Springer’s Software and System Modeling
journal (SoSyM)

3

http://www.etf.rs
http://www.sol.rs

Copyright (C) 2015 by Dragan Milicev

INTRODUCTION
About my research and publications:	

• Three books (bestsellers) in Serbian on OOP, C++, and UML	

• Papers in journals and conferences, some contributing to modeling and UML. A short selection:	

• Milićev, D., "Automatic Model Transformations Using Extended UML Object Diagrams in Modeling
Environments," IEEE Transactions on Software Engineering, Vol. 28, No. 4, April 2002	

• Milićev, D., “On the Semantics of Associations and Association Ends in UML," IEEE Transactions on
Software Engineering, Vol. 33, No. 4, April 2007	

• Milićev, D., “Towards Understanding of Classes versus Data Types in conceptual Modeling and
UML," Computer Science and Information Systems, Vol. 9, No. 2, June 2012	

• Milićev, D., Mijailović, Ž., “Capsule-Based User Interface Modeling for Large-Scale Applications,” IEEE
Transactions on Software Engineering, Vol. 39, No. 9, pp. 1190-1207, September 2013	

• Milovanović, V., Milićev,D., “An Interactive Tool for UML Class Model Evolution in Database
Applications,“ Software and Systems Modeling, September 2013	

• etc. (full list available at www.rcub.bg.ac.rs/~dmilicev)

4

http://www.rcub.bg.ac.rs/~dmilicev

Copyright (C) 2015 by Dragan Milicev

INTRODUCTION
About my research and publications:	

• The Wiley/Wrox book on MDD with Executable UML (2009)	

• Chinese translation published by Tsinghua University Press (2011)

5

Copyright (C) 2015 by Dragan Milicev

INTRODUCTION
About my professional activities:	

• 30 years of industrial experience in building complex commercial software systems	

• Served as chief software architect, project manager, consultant, or developer in over
30 large industrial projects:	

• With customers and partners in: USA, Germany, France, Italy, Norway, Serbia, …	

• In different domains: e-government, telecom, health and social care, customer
relationship, human resources, document management, engineering, …	

• Of different size: from SME to national-level (e.g. National Cadastre of Serbia,
National e-ID Document Issuance of Macedonia, National Civil Register of Iraq,
etc.)

6

Copyright (C) 2015 by Dragan Milicev

CHAPTER I	

UML SCHOOLS	

Models as Sketches or Blueprints vs. Executable Models

7

Copyright (C) 2015 by Dragan Milicev

UML SCHOOLS
Two schools of using and applying UML:	

• “Informal UML School” (Martin Fowler et al.):	

	

 UML used to:	

• sketch,	

• make blueprints, 	

• document	

	

 architecture, design, etc. of a software system.	

• “Formal UML School” (Bran Selic, Steve Mellor, et al.):	

	

 UML used as an executable (“programming”) language

8

Copyright (C) 2015 by Dragan Milicev

THE INFORMAL UML SCHOOL
Characteristics:	

• UML used to sketch, make blueprints, or document architecture, design, pieces
of structure or behavior, key concepts or mechanisms, business processes/
workflows, etc.	

• Used in early phases of requirements engineering, conceptualization or design
(sketches), and in late phases of design and documentation (blueprints)	

• Convenient as a vehicle to convey an idea or a message to others	

• Does not require deep knowledge of UML advanced concepts and their
semantics	

• Very lightweight and flexible

9

Copyright (C) 2015 by Dragan Milicev

THE INFORMAL UML SCHOOL
Characteristics:	

• UML models used in early stages, for requirements engineering, conceptualization, or architecture and
design sketching are usually very abstract, but completely vague with semantics - can be interpreted in
many different ways, depending on the context, assumptions, viewpoint, implementation strategy, etc.

10

Copyright (C) 2015 by Dragan Milicev

THE INFORMAL UML SCHOOL

Consequence: rush-to-code syndrome!

“A pervasive unease during the early development
phases, a prevailing attitude among the developers
that requirements definition and design models
are ‘just documentation,’ and a conviction that the
‘real work’ has not begun until code is being
written.” [Selic et al., Real-Time Object-Oriented Modeling, Wiley,
1994]

11

Copyright (C) 2015 by Dragan Milicev

THE INFORMAL UML SCHOOL
Characteristics:	

• UML models used as blueprints of implementation artifacts usually do not carry additional (higher-
level abstraction) semantics, but simply describe the artifacts implemented in other “implementation-
level” technologies, e.g., OOPL code, database schema, implementation framework, etc.	

• Lower-level abstraction == reduced expressiveness => models are over-specified: unnecessary
additional work => reduced productivity!	

• Models are simple “drawings of code/schema/…”. May help in understanding the artifacts, but do
not bring additional value to the implementation process - significant additional work =>
reduced productivity!

12

Copyright (C) 2015 by Dragan Milicev

THE INFORMAL UML SCHOOL
Characteristics:	

• UML models used for documentation only suffer from phase discontinuities:	

• discrepancies between the real (executable) artifacts and the documentation
- documentation is never fully up-to-date	

• updating documentation is tedious => significant unnecessary additional
work => reduced productivity	

Overall consequences:	

• switching to UML modeling (from just simply traditional programming/
coding) in an inappropriate way adds burden to developers and reduces
development productivity - moves us one step backwards!	

• many people have been disappointed by using UML for that reason!

13

Copyright (C) 2015 by Dragan Milicev

THE FORMAL UML SCHOOL
Solution:	

• Use UML in a controlled, appropriate way - with formal, executable semantics	

• Formal, executable semantics is a key to usage of a software design language:	

• unambiguity of interpretation	

• understanding of a concept or rule is much easier by watching its runtime effects (runtime
semantics) - programmers usually learn a new language by experimenting with simple examples
that illustrate the runtime semantics	

(otherwise, one has to map the semantics of a new concept to something (s)he is familiar
with, in a different semantic domain; in this context of UML, this is usually an OOPL, relational
database or similar - turns modeling into “drawing code”)	

• UML models become authoritative, executable artifacts - the real software!	

• No more rush-to-code syndrome	

• No discrepancy between software and documentation - models are accurate documentation

14

Copyright (C) 2015 by Dragan Milicev

THE FORMAL UML SCHOOL
• A modeling language is executable if the concepts of a modeling language have formal

semantics that enable models to be transformed completely automatically into forms that
can be executed or interpreted in a way that results in running applications.	

• However, even traditional programming languages fit in this definition. What is the difference?	

• Abstraction level: modeling languages, either general-purpose (such as UML) or especially
domain-specific ones (DSL), are typically more abstract, expressive and closer to the
problem domain. (Note: even classical programming languages have been increasing their
level of abstraction by time, so this is a vague and relative criterion!)	

• Notation: modeling languages often use a combined visual (diagrammatic) and textual
notation, while classical programming languages use textual notations only. (This is not
not a strict criterion, either as many modeling languages have also purely textual
notation.)	

• Strictness: programs in classical programming languages must be fully complete and filled
in with details to compile - compilers are very rigid and rigorous. Models do not have to
be fully detailed, and can still remain executable (as long as they are well-formed).

15

Copyright (C) 2015 by Dragan Milicev

ABOUT UML AND PROFILES
• UML is (mostly but not fully deliberately) designed to be vague in many points, with the lack of formal

semantics and with many semantic variation points, in order to be flexible, adaptable, and usable in many ways	

• fUML (Foundational Subset for Executable UML Models): an initiative and standard of OMG for tightening up
the semantics of some parts of UML	

• UML profiles: adaptations of the core language that allow you to:	

• select a subset of the language of interest for a particular domain, kind of applications, etc.	

• extend the core language with new concepts, or by interpreting the semantics of the existing concepts	

• define the semantics of the used concepts in a formal and executable way.	

• OOIS UML - a profile for UML defined for object-oriented information systems, i.e. applications with:	

• complex conceptual model (vocabulary of a domain)	

• massive persistent instantiation of key abstractions (i.e., need for a database)	

• complex business logic (behavior)	

• rich user interface

16

Copyright (C) 2015 by Dragan Milicev

CHAPTER II	

ABOUT SOLOIST	

A Java-Based Framework for Model-Driven Development of
Information Systems with Executable UML

17

Copyright (C) 2015 by Dragan Milicev

ABOUT SOLOIST
• SOLoist is a Java-based framework for model-driven development of web-oriented information systems with

Executable UML (OOIS UML profile)	

• SOLoist is not:	

• a UML modeling tool; instead, it uses a third-party UML tool	

• an object/oriented database (although it does provide the functionality of an OO database with UML
semantics); instead, it stores the data in a standard, third-party relational database management system
(RDBMS)	

• a programming language; instead, it uses Java as the implementation language of details.	

• Current generation of SOLoist - G4. History:	

• G1, desktop,1999-2001: Rational Rose, Visual Basic	

• G2, desktop, 2002-2003: Rational Rose, C++, Microsoft Foundation Classes (MFC)	

• G3, desktop, 2003-2008: Rational Rose, C++, Qt	

• G4, Web, 2009-2015: StarUML, Java, Google Web Toolkit (GWT)	

• G5 under development!

18

Copyright (C) 2015 by Dragan Milicev

SOLOIST DATASHEET
• SOLoist consists of:	

• plug-ins for StarUML for Java code generation for class models and state machine models	

• runtime environment (kind of a UML virtual machine) that provides UML runtime semantics over an API (“UML system
calls”), object persistence, and UML reflection	

• basic model library	

• GUI library for rapid development with UML-semantically coupled widgets	

• Development:	

• UML modeling tool: StarUML™ (an open-source, free UML modeling tool)	

• Target language: Java	

• IDE: Eclipse	

• Execution:	

• Application server : Tomcat or any other (e.g. Wildfly)	

• DBMS: MySQL, Oracle, MS SQL Server, Sybase, adaptable to any other SQL-compliant RDBMS	

• GUI framework: Google Web Toolkit (GWT)	

19

Copyright (C) 2015 by Dragan Milicev

DEVELOPMENT PROCEDURE
• Basic development procedure:	

• Develop a model in StarUML	

• Generate XMI for the SOLoist Runtime	

• Generate Java code from model	

• Write GUI code if necessary	

• Integrate and compile the code in Eclipse	

• Execute on a Web server	

• Follow the Tutorial at www.soloist4uml.com

20

http://www.soloist4uml.com

Copyright (C) 2015 by Dragan Milicev

CHAPTER III	

MODELING STRUCTURE IN

SOLOIST	

21

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

• Design a structural (class) model in UML and generate the app:	

• generate Java code	

• generate database schema using a SOLoist utility

22

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

You get immediately, without any additional actions in model or code:	

• all classes are persistent by default (unless you specify them differently)	

• no boilerplate manual coding and annotations (everything is generated)	

• direct and transparent object persistence	

• no need for object ID management, all this is managed by the framework

23

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

Compare it with using another persistence framework, based on an OOPL (e.g. Java) and its
semantics. Example:	

“Every entity must have a primary key (simple, composite or auto-generated):”	

	

 @TableGenerator(name="employeeGen", table="EJB_ORDER_SEQUENCE_GENERATOR",  
	 	 pkColumnName="GEN_KEY", valueColumnName="GEN_VALUE",  
	 	 pkColumnValue="EMPLOYEE_ID", allocationSize=10)	

	 @Id	

	 @GeneratedValue(strategy=GenerationType.TABLE, generator="employeeGen")	

	 public Long getEmployeeID() { return employeeID; }	

• Is this all really necessary?	

• No. It is accidental complexity caused by a heavy influence of the underlying technology (relational
database)

24

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

Complexity:	

• Essential complexity: an inevitable component of
complexity that is inherent to the very problem domain 	

• Accidental complexity arises purely from mismatches in
the particular choice of tools and methods applied in
the solution	

We cannot avoid essential complexity, but we can (and
should!) reduce accidental complexity

25

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

Deal with an object as usual, and think of an object as a separate identity,
residing in an abstract object space, from its creation to its destruction:	

• Plain and natural coding	

• No confusion wrt. object in memory vs. record in database	

• No burden about loading the object and updating its database copy	

	 Employee emp = new Employee(); 
	 … 
	 emp.dept.set(dept); 
	 … 
	 emp.destroy();

26

emp is already persistent.	

No need for “persist” or “save”.	

emp is removed from the object space (database)	

dept.members immediately includes emp	

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

Compare it with using another persistence framework, based on an OOPL (e.g. Java) and its
semantics. Example:	

@PersistenceContextEntityManager em;  
...  
public Employee createEmployee(Department d){  
 Employee empl = new Employee();  
 d.getMembers().add(empl);  
 em.persist(empl);  
 return empl;  
} 	

The developer must be aware of the fact that the Java object and its database representation
are separate items that have to be kept in sync.	

…Yet another instance of accidental complexity caused by the influence of the underlying
implementation

27

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

You also get - generic browsing of object space (SOLoist Explorer):

28

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

• Supported concepts:	

• Classes	

• Attributes	

• Associations (binary associations only)	

• Generalization/specialization (single inheritance only)	

• Attribute types:	

• Boolean	

• Integer	

• Real	

• Currency	

• Text	

• Enumeration (user-defined)	

• File (binary)	

• Picture
29

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

• Supported concepts for attributes:	

• name and type	

• visibility	

• initial value	

• multiplicity (single- or multi-valued): affects only the database schema and management, does not impose
constraints!	

• unique constraint

30

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

• Supported concepts for associations and association ends:	

• associations only between classes	

• name (of association or end) is optional	

• aggregation (no semantic impact) and composition (with the meaning of propagated deletion)	

• multiplicity (single- or multi-valued): affects only the database schema and management, does not
impose constraints!	

• visibility	

• ordering	

• navigability

31

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

For objects space manipulation, the SOLoist UML API
ensures full UML semantics of actions:	

Employee empl = new Employee();  
dept.members.add(empl);  
// or:  
empl.dept.set(empl); // bot not both!  
String emplName = empl.name.val().toString();  
empl.name.set(newName);  
dept.destroy();

32

Create object action (incl. constructor)	

Read slot action.	

Destroy object action. Implicitly destroys all
links of the object, and sub departments in
this case (due to the composition end).	

Create link (write slot) action	

dept.members immediately includes emp	

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

Compare this with using another persistence framework, based on an OOPL (e.g. Java) and its semantics:	

class Department {  
	 public List<Employee> members = new ArrayList<Employee>; 
	 … 
}	

class Employee {  
	 public Department dept; 
	 … 
}  
 
// And both of these are needed:  
dept.members.set(empl);  
empl.dept.set(empl);	

Problems with the expressiveness of the OOP level:	

• It is the responsibility of the developer to keep the fields in sync – prone to error	

• More primitive semantics: unidirectional references instead of (bidirectional) links (relationships)
33

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
SOLOIST

• Problem with using the “traditional” approach =  
UML class model + actions in OOPL (or, even worse, in SQL):  
 
semantic discontinuity: the lack of formal coupling between the elements of
different kind (e.g., structure and behavior)	

• Semantic discontinuity is another cause of the rush-to-code syndrome	

• Another bad example of semantic mismatch causing accidental complexity
(=additional unnecessary work): DAO layer — Anemic Object anti-pattern	

• Conclusion: Structural UML modeling in OOIS UML with SOLoist
eliminates accidental complexity (=> improved productivity) and does not
suffer from semantic discontinuity (= full semantic coupling)

34

Copyright (C) 2015 by Dragan Milicev

CHAPTER IV	

QUERYING IN SOLOIST	

OQL and Query Builder

35

Copyright (C) 2015 by Dragan Milicev

OQL

• Object Query Language (OQL) is an object-oriented descendent of the Structured Query Language (SQL)	

• In OQL, you deal with objects of classes and with links of associations, instead of tables, records, and fields	

• Example: get the names and date of births of all employees of the department ‘R&D’	

	 SELECT	 e.name, e.dateOfBirth 
	 FROM	 	 Department d, d.members e	 	 // or: FROM Employee e, e.dept d 
	 WHERE		 d.name = ‘R&D‘	

• The equivalent SQL query must join the tables:	

	 SELECT	 e.name, e.dateOfBirth 
	 FROM	 	 Department d, Employee e	 	 // or: FROM Department d INNER JOIN Employee e … 
	 WHERE		 e.dept = d.ID AND d.name = ‘R&D’	// … ON e.dept = d.ID WHERE d.name = ‘R&D’	

• In case of a many-to-many association, the equivalent SQL query must join three tables (think about maintenance!):	

• OQL: 	

 SELECT e.name, e.dateOfBirth FROM Department d, d.members e WHERE d.name = ‘R&D’	

• SQL: 	

 SELECT e.name,e.dateOfBirth FROM Department d, Assignment a, Employee e  
	 	 WHERE d.ID=a.dept AND a.members=e.ID AND d.name = ‘R&D’	

36

Exactly the same

Significantly different, especially in
case of several joins

Copyright (C) 2015 by Dragan Milicev

OQL

• Inheritance and specialization (down-casting) example: 
select Employees of Headquarters	

	 SELECT		 e.lastName, e.dateOfBirth, h.name, h.address 
	 FROM	 	 Employee e, e.dept:Headquarters h 
	 WHERE	 	 …

37

Inheritance

Specialization (down-casting)

Copyright (C) 2015 by Dragan Milicev

OQL
• Queries can return:	

• slots, holding a value or a collection of values:	

	 SELECT e.name, e.dateOfBirth, e.dept FROM…	

• objects	

	 SELECT e, e.name, e.dateOfBirth, d FROM…	

• Queries can have parameters:	

	 SELECT d, d.name, …  
	 FROM Department d, d.members  
	 WHERE d.name like #name#	

• Queries can be executed:	

• interactively, with SOLoist Explorer	

• programmatically, via the API	

38

String oql =	 "SELECT d, d.name, e, e.name, e.dateOfBirth " +	
	 	 	 "FROM Department d, d.members e " +	
	 	 	 "WHERE d.name like #name#"; 
 
BasicParameterValueStore param =  
	 	 	 new BasicParameterValueStore();	
param.setParameterValue("name", Text.fromString(nameValue));	
!
List<ITuple> results = Queries.executeOQL(oql,param).asList();

Copyright (C) 2015 by Dragan Milicev

QUERYING API
• For fetching of individual objects of a single class programmatically, there is a simple

API:	

	 List<Department> depts =  
	 	 return QueryUtils.getAllInstances(Department.CLASSIFIER);	

	 List<Employee> employees =  
	 	 QueryUtils.findInstancesBy(Employee.CLASSIFIER,  
	 	 Employee.PROPERTIES.isMarried, Boolean.TRUE,  
	 	 fetchOffset, fetchSize);  
	 	 // to fetch all: fetchOffset=0, fetchSize=0	

	 Employee employee =  
	 	 QueryUtils.findSingleInstanceBy(Employee.CLASSIFIER,  
	 	 Employee.PROPERTIES.name, Text.fromString("John Doe"), bMustExist);	

• For more complex queries, use QueryBuilder

39

Copyright (C) 2015 by Dragan Milicev

QUERY BUILDER
• QueryBuilder is an API for building queries programmatically, using their internal representation	

• Can support everything as OQL, but has a bigger expressive power	

• Used mostly in the implementation of interactive searches

40

Copyright (C) 2015 by Dragan Milicev

QUERY BUILDER
package companyorganization;	
!
import java.util.Arrays;	
!
import rs.sol.soloist.server.guiconfiguration.components.GUISearchResultComponent.Parameter;	
import rs.sol.soloist.server.guiconfiguration.components.GUISearchResultComponent.Result;	
import rs.sol.soloist.server.uml.queries.AssocEndTerm;	
import rs.sol.soloist.server.uml.queries.AttributeTerm;	
import rs.sol.soloist.server.uml.queries.ObjectTerm;	
import rs.sol.soloist.server.uml.queries.SimpleQueryDefinition;	
import rs.sol.soloist.server.uml.queries.builder.QueryBuilder;	
!
public class EmployeesQueryBuilder extends QueryBuilder {	
	 	
	 private static final SimpleQueryDefinition prototypeQuery;	
	 	
	 @Parameter@Result("${Name}")	
	 public static final String NAME = "NAME";	
	 	 	
	 @Parameter@Result("${Department}")	
	 public static final String DEPARTMENT_NAME = "DEPARTMENT_NAME";	
	 	
	 @Parameter@Result("${Department}")	
	 public static final String DEPARTMENT = "DEPARTMENT";	
	 @Result("${}") @Parameter	
	 public static final String DEPARTMENT_ALL = “DEPARTMENT_ALL";	
	 …	 41

Copyright (C) 2015 by Dragan Milicev

QUERY BUILDER
	 …	
	 @Parameter@Result("${Gender}")	
	 public static final String GENDER = "GENDER";	
	 	
	 @Result("${Date of birth}")	
	 public static final String DATE_OF_BIRTH = "DATE_OF_BIRTH";	
	 	
	 @Parameter	
	 public static final String DATE_OF_BIRTH_FROM = "DATE_OF_BIRTH_FROM";	
	 	
	 @Parameter	
	 public static final String DATE_OF_BIRTH_TO = "DATE_OF_BIRTH_TO";	
	 	
	 @Parameter@Result("${Number of children}")	
	 public static final String NUMBER_OF_CHILDREN = "NUMBER_OF_CHILDREN";	
	 	
	 @Parameter@Result("${Is married}")	
	 public static final String IS_MARRIED = "IS_MARRIED";	
	 	
	 @Result("${Employee}")	
	 public static final String EMPLOYEE = "EMPLOYEE";	
!
	 …

42

Copyright (C) 2015 by Dragan Milicev

QUERY BUILDER
	 …	
	 	 protected EmployeesQueryBuilder() {	
	 	 	 super(prototypeQuery);	
	 	 	 contributions.addAll(Arrays.asList(
	 	 	 	 new ContributePrefixMatch(NAME),	
	 	 	 	 new ContributePrefixMatch(DEPARTMENT_NAME),	
	 	 	 	 new ContributeEqual(IS_MARRIED),	
	 	 	 	 new ContributeGreaterOrEqual(DATE_OF_BIRTH_FROM, DATE_OF_BIRTH),	
	 	 	 	 new ContributeLessOrEqual(DATE_OF_BIRTH_TO, DATE_OF_BIRTH),	
	 	 	 	 new ContributeEqual(NUMBER_OF_CHILDREN),	
	 	 	 	 new ContributeEqual(GENDER),	
	 	 	 	 new ContributeIn(DEPARTMENT)	
));	
	 	 	
	 	 	 includeInResultOnce(
	 	 	 	 EMPLOYEE,	
	 	 	 	 NAME,	
	 	 	 	 DEPARTMENT,	
	 	 	 	 GENDER,	
	 	 	 	 DATE_OF_BIRTH,	
	 	 	 	 NUMBER_OF_CHILDREN,	
	 	 	 	 IS_MARRIED	
);	
	 	 }	
	 …

43

Copyright (C) 2015 by Dragan Milicev

QUERY BUILDER
	 …	
	 @Override	
	 public SimpleQueryDefinition buildCountQuery() {	
	 	 require(EMPLOYEE);	
	 	 return super.buildCountQuery();	
	 }	
!
	 @Override	
	 public SimpleQueryDefinition buildQuery() {	
	 	 require(EMPLOYEE);	
	 	 return super.buildQuery();	
	 }	
	 	
	 static {	
	 	 ObjectTerm employee = new ObjectTerm(Employee.FQ_TYPE_NAME).as(EMPLOYEE);	
	 	 new AttributeTerm(employee, Employee.PROPERTIES.name).as(NAME);	
	 	 new AttributeTerm(employee, Employee.PROPERTIES.gender).as(GENDER);	
	 	 new AttributeTerm(employee, Employee.PROPERTIES.dateOfBirth).as(DATE_OF_BIRTH);	
	 	 new AttributeTerm(employee, Employee.PROPERTIES.numberOfChildren).as(NUMBER_OF_CHILDREN);	
	 	 new AttributeTerm(employee, Employee.PROPERTIES.isMarried).as(IS_MARRIED);	
	 	 	
	 	 AssocEndTerm dept = new AssocEndTerm(employee, Employee.PROPERTIES.dept).as(DEPARTMENT);	
	 	 new AttributeTerm(dept, Department.PROPERTIES.name).as(DEPARTMENT_NAME);	 	
	 	 prototypeQuery = new SimpleQueryDefinition(employee)	
	 	 	 .from(employee, dept)	
	 	 	 .nullable(dept);	
	 }	
}	 44

Copyright (C) 2015 by Dragan Milicev

CHAPTER V	

DATABASE FEATURES IN SOLOIST	

Optimizations, Performance, Scalability

45

Copyright (C) 2015 by Dragan Milicev

DATABASE FEATURES
• Database schema automatic update: SOLoist checks the version of the schema

in DB and does the necessary upgrade through all intermediate versions	

• Model evolution problem in production: how to keep the production data in
DB when updating the schema on model change	

• SOLoist utility for model evolution: does the diff-ing of two UML (class) model
versions (with the user’s confirmations or interventions) and generates an
upgrade (ALTER TABLE) script	

• See details in:	

Milovanović, V., Milićev,D., “An Interactive Tool for UML Class Model Evolution in
Database Applications,“ Software and Systems Modeling, September 2013

46

Copyright (C) 2015 by Dragan Milicev

DATABASE FEATURES
• SOLoist is constructed and prepared for high volume and scalability, in terms of	

• data volume (hundreds of millions of objects)	

• throughput (hundreds of concurrent users)	

• There are many clever optimizations in queries posed to the database, to
significantly reduce query execution time for huge volumes of data, such as:	

• redundant copy of an inherited attribute value in each table of a derived
class to accelerate read queries in case of rare writes 
(configure attribute’s tagged value AttrMappingStrategy)	

• avoiding unnecessary joins of tables

47

Copyright (C) 2015 by Dragan Milicev

DATABASE FEATURES
Example: 
 
SOLoist vs. Hibernate  
performing very complex queries
spanning multiple many-to-many
associations and deep hierarchies:

48

Copyright (C) 2015 by Dragan Milicev

DATABASE FEATURES

49

Copyright (C) 2015 by Dragan Milicev

DATABASE FEATURES

50

Copyright (C) 2015 by Dragan Milicev

CHAPTER VI	

MODELING BEHAVIOR IN

SOLOIST	

Operations/Methods, Commands, State Machines

51

Copyright (C) 2015 by Dragan Milicev

OPERATIONS AND METHODS
• Operation is a feature of a class representing a specification of a service that can be

requested from any instance of that class in order to activate an associated behavior	

• An operation specifies that a service may be requested from any (direct or indirect)
instance of that class	

• At runtime, an operation of an object can be invoked. The actual arguments are then
supplied. The invocation of the operation is manifested by the behavior specified as
the implementation of the operation	

• An implementation of an operation is called a method. A method is the specification
of behavior that is activated when the operation of an object is invoked	

• If a class does not attach a method to an operation of that class, the operation is
called abstract

52

Copyright (C) 2015 by Dragan Milicev

OPERATIONS AND METHODS
• In SOLoist, you model operations as usual in UML	

• Supported features of operations: 	

• arguments: can be of any type (a reference to a class, to a SOLoist data type, or any Java type)	

• return value: any type	

• abstract operations

53

Copyright (C) 2015 by Dragan Milicev

OPERATIONS AND METHODS
• In SOLoist, methods are written in “preserved sections” of Java methods generated for the class	

• The contents of the “preserved sections” in the generated code are preserved when the code
is regenerated — all other code will be overwritten when regenerated (do NOT change it
manually)	

• This ensures a strict development policy and maintenance - every artifact has its sole and
unique “source form” (model and code) and is to be changed there.	

• No reverse engineering, no round-trip engineering!

54

public int countEmployees() 	
// -------------<SOL id="06c35243-832e-4213-9195-9f7757a55651:___throw__" />	
// -------------<LOS id="06c35243-832e-4213-9195-9f7757a55651:___throw__" />	
{	
 // ---------<SOL id="06c35243-832e-4213-9195-9f7757a55651:___body___" />	
 int count = 0;	
 for (Department d: this.subDept.read()) {	
 count += d.countEmployees();	
 }	
 return count;	
 // ---------<LOS id="06c35243-832e-4213-9195-9f7757a55651:___body___" />	
}

Copyright (C) 2015 by Dragan Milicev

OPERATIONS AND METHODS
• A method is written in Java (as the host/detail/action language), and can contain:	

• control of flow (if-then-else, loops, blocks)	

• UML actions, in terms of SOLoist API calls	

• operation calls (with the semantics of Java - compliant to UML; polymorphism assumed by default)	

• all other Java native code

55

Method of operation in UML: Message::send(to:Addressee[*]):	
	 for (Addressee addr : to) {	
	 	 this.addressees.add(to);	
	 	 to.receive(this);	
	 }

UML action “add a value to a slot” (creates a link)

UML action “call operation” (usual invocation)

Copyright (C) 2015 by Dragan Milicev

OPERATIONS AND METHODS
• Concurrency control:	

• optimistic concurrency control: exceptions raised on concurrency conflicts	

• the subject of control (detection of concurrency conflicts) are objects, not database records (another
semantic discontinuity existing in other ORM frameworks that leave the concurrency control to the DBMS)	

• Isolation and fault tolerance:	

• transaction mechanism implemented by SOLoist	

• the database transaction is issued when the SOLoist transaction is committed	

• actions issued to the database are optimized and compacted: only the net effects are sent to the RDBMS
=> smaller transactions => reduced RDBMS workload => better throughput	

• transactions can be nested: RDBMS transaction is issued on the topmost transaction’s commit	

• UML actions are implicit transactions	

• requests from GUI are also performed transactionally

56

Copyright (C) 2015 by Dragan Milicev

COMMANDS
• Command is a (usual SOLoist UML) class whose objects represent requests for a service from

the system, issued interactively from the GUI or another external system (Command design
pattern)	

• When a command is issued from the GUI, an instance of the command is created and its
operation execute is ultimately invoked. The behavior of the command is specified within the
method of this operation.	

• A command can have its input pins, which are parameters whose values are provided by the
GUI dynamically, at the time of command’s activation.	

• A command can have its output pins, which are results provided by the command’s execution.
These values can be used in the GUI dynamically, once the execution has completed.	

• The elements used in the GUI to help the user understand the command are specified in its
name and description attributes.	

• A command can be applied on an object or a collection of objects.

57

Copyright (C) 2015 by Dragan Milicev

COMMANDS
• Command is modeled as a class, stereotyped with <<command>> and derived from the built-in class

Command (directly or indirectly).	

• Input and output pins are modeled as properties (attributes or association ends) of the command,
stereotyped with <<inputPin>> or <<outputPin>>

58

Method of CmdCountAllEmployees::execute():	
protected void execute() {	
	 Department d = this.input.val();	
	 if (d != null) {	
	 	 int count = d.countEmployees();	
	 	 this.output.set(Integer.valueOf(count));	
	 }	
}

Copyright (C) 2015 by Dragan Milicev

COMMANDS
• Generic or built-in commands are commands that embody certain UML actions upon the object

space. They are implicitly defined in the system and accessible from the application. They are
part of the SOLoist UML model library.	

• Domain-specific commands represent entry points to the implementation of the specific
functionality of the system, not directly supported by the execution environment and generic
commands. They are introduced into the model by the modeler. 	

• Generic commands in SOLoist:

59

CmdCreateObject	
CmdCreateObjectOfClass	
CmdDestroyObject	
CmdCloneObject	
CmdCopySlots	
CmdReorderValuesInSlot	
CmdMoveValueInSlot	
CmdCopySlot	
CmdClearSlot*	

CmdAddValueToSlot*	
CmdRemoveValueFromSlot*	
CmdSetSlot*	
CmdReadSlot*	
CmdCreateObjectAndLinkToOne	
CmdCreateObjectAndLinkToTwo	
CmdCreateObjectAndLinkToObject	
* Currently not available, or available in separate forms for
attributes and association ends, but will be revised in future
versions.

Copyright (C) 2015 by Dragan Milicev

COMMANDS
• Advantages of using commands (Command DP):	

• encapsulation of business logic	

• clear architecture	

• generic handling of user’s requests	

• dynamic configuration	

• logging	

• authorization (access rights)	

• encapsulation of common maintenance:	

• transaction mechanism	

• locking	

• parameters processing	

• exception handling

60

Copyright (C) 2015 by Dragan Milicev

STATE MACHINES
• State machines are often very useful for modeling event-driven behavior of entities

whose reaction on an incoming stimulus depends not only on the kind of that stimulus,
but also on the history of the previously received stimuli, i.e., on the current state of the
receiver.	

• In essence, they model the lifetime of the entity in terms of states and transitions.	

• SOLoist supports hierarchical UML state machines, with nested states and submachines.

61

Copyright (C) 2015 by Dragan Milicev

STATE MACHINES
Main state machine diagram for order processing (lifecycle of objects of class Order):

62

Included sub-machine diagram (Active):

Copyright (C) 2015 by Dragan Milicev

STATE MACHINES
Supported concepts:	

• Expressions used in guards and actions: host refers to the host object	

• Transitions, with triggers, guards, and actions: trigger[guard]/action	

• Triggerless transitions: enabled as soon as the source state completes	

• Primitive states	

• Composite states	

• Initial pseudo states	

• Choice pseudo states (optional else branch)	

• Final states	

• Submachines	

• Entry and exit points	

• Exit from state on timeout	

Not supported: history, concurrency (fork/join/regions)

63

Copyright (C) 2015 by Dragan Milicev

STATE MACHINES
• An SM is normally modeled as a behavioral feature attached to a class called the host class.	

• The SM then describes the lifecycle of objects of that host class.	

• At runtime, each object of the host class, called the host object, can change its current state according to the definition of the
SM.	

• If an SM is not associated with a class in the model, and submachines are typically stand-alone modeling elements, the host class
of the SM or submachine is specified through the HostClass tagged value available in the SOLoist profile.	

• The behavior specified with an SM is ensured by the Java code generated for the SM (the “SM class”). 	

• The SM class is a stateless pure Java class, while the state has to be embodied in the host class (object) (Strategy design patter
with a stateless Strategy, the SM class playing the role of the Strategy).	

• In order to implement the necessary behavior, methods of the SM class call back methods of the host class to:	

• read the current state of the host object,	

• execute guard conditions and actions on transitions,	

• change the current state of the host object,	

• perform other auxiliary processing, such as optional locking, logging, setting the timeout, etc.	

• To trigger the state machine and process it, call the operation of the SM class:	

boolean process (HostClass hostObject, String triggerName);
64

Copyright (C) 2015 by Dragan Milicev

CHAPTER VII	

WEB GUI DEVELOPMENT IN

SOLOIST	

Concepts, Principles, Library

65

Copyright (C) 2015 by Dragan Milicev

CONCEPTS

66

value

element

value

• GUI components: ready-to use building blocks from the SOLoist library, configurable and fully coupled
with the UML object space	

• Input and output pins: “ports” of components for receiving and sending messages	

• Wires: connectors between ports	

• Data flow

Copyright (C) 2015 by Dragan Milicev

• Capsule: a profiled structured class that models a simple UI
component or a coherent UI fragment of logically and functionally
coupled components or other fragments with a clear interface.	

• Capsule ensures:	

• proper abstraction	

• encapsulation	

• inherent potential for reuse

emp:Employee

CONCEPTS

67

Copyright (C) 2015 by Dragan Milicev

CONCEPTS
• In the current version of SOLoist, a capsule is defined as a pure Java class in code tha extends the built-in class Capsule:

68

public abstract class Capsule {	
!
	 protected GUIContainerComponent root;	
	 	
	 protected Capsule(GUIContainerComponent parent) {	
	 	 this(parent, false);	
	 }	
	 	
	 protected Capsule(GUIContainerComponent parent, boolean deferred) {	
	 	 root = createRoot();	
	 	 if (parent != null)	
	 	 	 parent.add(root);	
	 	 	
	 	 if (!deferred)	
	 	 	 build();	
	 }	
	 	
	 protected Capsule(Capsule parent) {	
	 	 this(parent, false);	
	 }	
	 …

Copyright (C) 2015 by Dragan Milicev

CONCEPTS

69

	 …	
	 protected Capsule(Capsule parent, boolean deferred) {	
	 	 root = createRoot();	
	 	 if (parent != null)	
	 	 	 parent.root.add(root);	
	 	 	
	 	 if (!deferred)	
	 	 	 build();	
	 }	
	 	
	 protected GUIContainerComponent createRoot(){	
	 	 return GUIPanelComponent.createFlow(null);	
	 }	
	 	
	 public abstract void build();	
}	

Copyright (C) 2015 by Dragan Milicev

public class EmployeeDetailsGeneral extends Capsule {	
!
	 private GUIRelayComponent employeeRelay;	
	 	
	 public ISlot ipEmployee(){	
	 	 return employeeRelay.ipRelay();	
	 }	
	 	
	 public EmployeeDetailsGeneral(GUIContainerComponent parent) {	
	 	 super(parent);	
	 }	
	 	
	 @Override	
	 public void build() {	
	 	 employeeRelay = GUIRelayComponent.create(root);	
	 	 	
	 	 GUIPanelComponent wrapPanelGeneral = GUIPanelComponent.createHorizontal(root);	
!
	 	 GUIPanelComponent panelGeneral = GUIPanelComponent.createTable(wrapPanelGeneral);	
	 	 panelGeneral.setStyle("tablePanels");	
!
	 	 GUILabelComponent.create(panelGeneral, "Name: ", 0, 0);	
	 	 GUIEdit employeeNameSlotComponent = GUIEdit.createField(panelGeneral, Employee.PROPERTIES.name, 0, 1);	
	 …	

CONCEPTS

70

Copyright (C) 2015 by Dragan Milicev

CONCEPTS

71

…	
	 GUILabelComponent.create(panelGeneral, "Date of birth: ", 1, 0);	
	 GUIEdit dateSlotComponent = GUIEdit.createField(panelGeneral, Employee.PROPERTIES.dateOfBirth, 1, 1);	
	 dateSlotComponent.setSize("167px", null);	
!
	 GUILabelComponent.create(panelGeneral, "Is married: ", 2, 0);	
	 GUIEdit isMarriedSlotComponent = GUIEdit.createField(panelGeneral, Employee.PROPERTIES.isMarried, 2, 1);	
!
	 GUILabelComponent.create(panelGeneral, "Gender: ", 3, 0);	
	 GUIEdit genderSlotComponent = GUIEdit.createField(panelGeneral, Employee.PROPERTIES.gender, 3, 1);	
!
	 GUILabelComponent.create(panelGeneral, "Number of children: ", 4, 0);	
	 GUIEdit numOfChSlotComponent = GUIEdit.createField(panelGeneral, Employee.PROPERTIES.numberOfChildren, 4,
1);	
	 	 	
	 GUILabelComponent.create(panelGeneral, "Department: ", 5, 0);	
	 GUIInput departmentGeneralList = GUIInput.createList(panelGeneral, Employee.PROPERTIES.dept);	
	 departmentGeneralList.setLayoutData(TableLayoutData.create(5, 1));	
!
	 GUILabelComponent.create(panelGeneral, "Contract: ", 6, 0);	
	 GUIPanelComponent panelFile = GUIEdit.createFile(panelGeneral, Employee.PROPERTIES.contract, true, true);	
	 panelFile.setLayoutData(TableLayoutData.create(6, 1));	
…

Copyright (C) 2015 by Dragan Milicev

CONCEPTS

72

…	
	 panelFile.setLayoutData(TableLayoutData.create(6, 1));	
!
	 GUIPanelComponent wrapPicturePanel = GUIPanelComponent.createVertical(wrapPanelGeneral);	
	 wrapPicturePanel.setStyle("photo");	
	 GUILabelComponent.create(wrapPicturePanel, "Photo: ", TableLayoutData.create(0, 2));	
	 GUIPanelComponent panelPicture = GUIEdit.createFile(wrapPicturePanel, Employee.PROPERTIES.photo, true,
true);	
	 	 	
	 // Wires (“bindings”):	
	 GUIComponentBinding.create(employeeRelay.opRelay(), employeeNameSlotComponent.ipElement(), 	
	 	 	 dateSlotComponent.ipElement(), 	
	 	 	 isMarriedSlotComponent.ipElement(), 	
	 	 	 genderSlotComponent.ipElement(), 	
	 	 	 numOfChSlotComponent.ipElement(), 	
	 	 	 panelFile.ipElement(), 	
	 	 	 departmentGeneralList.ipSlotValueElement(), 	
	 	 	 panelPicture.ipElement());	
	 }	

Copyright (C) 2015 by Dragan Milicev

CONCEPTS
• GUI item configuration setting is a set of presentational and behavioral parameters defined for one

particular kind of elements in the system:	

• icons (small, large, for drag-and-drop, etc.)	

• texts that are displayed as the name, type, description, label, and tip of the element	

• how sub-nodes in a tree view are obtained from the element	

• the behavior on double mouse click on the element	

• Elements can be objects of classes, but also elements of the UML model (e.g. classes, properties, etc.),
accessible through UML reflection	

• At runtime, GUI item settings are objects of an UML built-in class (from SOLoist model library)	

• A GUI item configuration setting can be a sub-setting of another setting, meaning that it inherits all the
parameters from the latter, but it can also redefine (i.e., override) any of the parameters, specifying
different appearance or behavior.

73

Copyright (C) 2015 by Dragan Milicev

CONCEPTS
• GUI context is a collection of GUI item configuration settings that define the presentational

parameters for one part of the system's GUI.	

• A GUI context can be a sub-context of another context, meaning that it inherits all the
configuration settings from the latter, but it can also redefine (i.e., override) any of the settings.	

• At runtime, GUI contexts are objects of an UML built-in class (from SOLoist UML model
library)

74

Copyright (C) 2015 by Dragan Milicev

CONCEPTS
	 // Object setting for department	
	 GUIObjectSetting departmentOS = GUIObjectSetting.create(application.getContext(), Department.CLASSIFIER);	
	 GUIPictureFeature.createSmallIcon(departmentOS, "res/img/CompanyOrganizationIcons/3.01_Department1.png");	
	 GUITextFeature.createName(departmentOS, "name");	
	 GUINavigatorFeature.createSubnodes(departmentOS, "subDepts");	
!
	 // Object setting for employee	
	 GUIObjectSetting employeeOS = GUIObjectSetting.create(application.getContext(), Employee.CLASSIFIER);	
	 GUIPictureFeature.createSmallIcon(employeeOS, "res/img/CompanyOrganizationIcons/3.03_MaleEmployee2.png");	
	 GUITextFeature.createName(employeeOS, "name");	
!
	 // Tooltip for department	
	 GUITextFeature tooltipDepr = new GUITextFeature();	
	 tooltipDepr.setFixed(true);	
	 tooltipDepr.setTextValue("Double click to see details");	
	 departmentOS.addFeature(tooltipDepr);	
!
	 // Tooltip for employee	
	 GUITextFeature tooltipEmpl = new GUITextFeature();	
	 tooltipEmpl.setFixed(true);	
	 tooltipEmpl.setTextValue("Double click to see details");	
	 employeeOS.addFeature(tooltipEmpl);	
!
	 …	

75

Copyright (C) 2015 by Dragan Milicev

CONCEPTS
	 // Bindings feature for Department (double click)	
	 GUIBindingsFeature bfDepartment = new GUIBindingsFeature();	
	 GUIComponentBinding.create(bfDepartment.opDoubleClick(), departmentPanel.ipDepartment());	
	 GUIComponentBinding.create(bfDepartment.opDoubleClick(), departmentPanel.ipShow());	
	 departmentOS.addFeature(bfDepartment);	
!
	 // Bindings feature for Employee (double click)	
	 GUIBindingsFeature bfEmployee = new GUIBindingsFeature();	
	 GUIComponentBinding.create(bfEmployee.opDoubleClick(), employeePanelTab.ipEmployee());	
	 GUIComponentBinding.create(bfEmployee.opDoubleClick(), employeePanelTab.ipShow());	
	 employeeOS.addFeature(bfEmployee);

76

• This ensures:	

• easy, but flexible customization	

• consistent appearance and look-and-feel throughout the application	

• less errors

Copyright (C) 2015 by Dragan Milicev

PRINCIPLES
Proper and full semantic coupling of GUI and object space (no semantic discontinuities):	

1. data binding of components:	

GUIEdit.createField(panelDeptDetails, Department.PROPERTIES.name)	
…	
GUIInput.createList(detailsPanel, Department.PROPERTIES.members)

77

Copyright (C) 2015 by Dragan Milicev

PRINCIPLES
Proper and full semantic coupling of GUI and object space (no semantic discontinuities):	

2. coupling with commands:	

GUIButtonComponent btnCreateEmpl = GUIButtonComponent.create(departmentButtonPanel, "Create Employee");	
	 	 btnCreateEmpl.setStyle("button");	
!
CmdCreateObjectAndLinkToObject createEmplCommand = new CmdCreateObjectAndLinkToObject();	
	 createEmplCommand.setClassName(Employee.CLASSIFIER);	
	 createEmplCommand.setAssocEndName(Department.PROPERTIES.members);	
createEmplCommand.setType(Department.CLASSIFIER);	
	 btnCreateEmpl.setCommand(createEmplCommand);	
!
GUIComponentBinding.create(departmentTreeView.opValue(), btnCreateEmpl,  
	 CmdCreateObjectAndLinkToObject.PROPERTIES.target);	

78

Copyright (C) 2015 by Dragan Milicev

PRINCIPLES
Behavior : 	

• When such a component receives a new value (a reference to the host object) on its input pin, it issues an AJAX request
to the server and fetches the value of the configured slot to display.	

• If the component is an edit component, it issues a Write Slot request to the server when input value is changed.	

• Input components do not change the object space, but provide the user’s input or selection to its output pin.	

• A button receives command parameters on its input pins. When pressed, it issues a request to execute the attached
command on the server, passing the parameters to the corresponding input pins of the command.

79

Copyright (C) 2015 by Dragan Milicev

PRINCIPLES
Consequences and features: 	

• Notification mechanism: for each change in the object space, SOLoist runtime notifies all GUI widgets
in the same user’s session (in which the transaction has been performed) — the widgets are updated
automatically, no need for any programming!	

• No semantic discontinuities	

• “Single-page” application paradigm	

• The entire application loads in a couple of seconds	

• Then, the UI is very fast and responsive (immediate response for entire static contents), as in desktop
applications	

• Significantly reduced network traffic and load for the server, and more workload for the client
(dedicated to GUI and one user session anyhow)	

• Deferred (lazy) loading of pieces of application is possible (load on demand)	

• Dynamic contents is also supported: fetch the contents of a capsule from the server, on each request

80

Copyright (C) 2015 by Dragan Milicev

LIBRARY• Rich library of built-in components	

• Custom-built components are also possible	

• Sample applications:

81

Copyright (C) 2015 by Dragan Milicev

LIBRARY
• Sample applications:

82

Copyright (C) 2015 by Dragan Milicev

LIBRARY
• Sample applications:

Copyright (C) 2015 by Dragan Milicev

CHAPTER VIII	

CONCLUSIONS	

84

Copyright (C) 2015 by Dragan Milicev

CONCLUSIONS
Model-driven development with executable UML and SOLoist:	

• ensures proper usage of UML with full power	

• eliminates discontinuities due to:	

• proper and formal coupling of different kinds of details (semantic discontinuities),	

• proper and formal coupling of elements of different level of details (scope discontinuities),	

• use of the same linguistic environment in all phases (phase discontinuities)	

• raises the level of abstraction in software development, both in conceptual modeling,
implementation of business logic, and UI development	

• significantly reduces accidental complexity existing in mainstream technologies	

• improves development productivity	

• reduces mistakes and makes maintenance easier

85

Copyright (C) 2015 by Dragan Milicev

SOLOIST REFERENCES
SOLoist is a mature, stable, robust, and scalable product that has been applied in
tens of large-scale international projects; a selection:

86

• Workshop Management
System (RailConsult, Germany)	

• Engineering Drawings
Management System (RCData,
Germany)	

• The Analysis of VHF/UHF,
Radar, and Radio-Relay
Services (Serbian Air Traffic
Control Agency)	

• Event Management System
(Indas, Serbia)	

• Human Resources System
(Government of Serbia)	

• National Real-Estate Cadastre
(Government of Serbia)	

• First-Aid Assistant (QMSoft,
Norway)

• Real Estate Agency Customer-
Relationship System (Quartett,
Norway)	

• Student Assessment System
(HCR, Norway)	

• Personal Training Organizer
(IMG, Norway)	

• Transport Bidder (UK)	

• National Civil Register System
(G&D, Germany)	

• Trainers Management System
(Norwegian People’s Aid)

Copyright (C) 2015 by Dragan Milicev

Q&A
Thank you for your attention!

87

www.soloist4uml.com

http://www.soloist4uml.com

