MODEL-DRIVEN DEVELOPMENT
WITH EXECUTABLE UML
AND SOLOIST

Prof. Dr. Dragan Milicev

University of Belgrade, School of Electrical Engineering, Dept. of Computing
dmilicev@etf.rs, www.rcub.bg.ac.rs/~dmilicev

Presentation for UMLChina, September 3rd, 2015

Copyright (C) 2015 by Dragan Milicev

mailto:dmilicev@etf.rs
http://www.rcub.bg.ac.rs/~dmilicev

OUTLINE

* Introduction (5)

« UML Schools: Models as Sketches or Blueprints vs. Executable Models (107

« About SOLoist (5

» Modeling Structure in SOLoist (15)

» Querying in SOLoist: OQL, Query Builder (107

» Database Features in SOLoist: Optimizations, Performance, Scalability (5')

» Modeling Behavior in SOLoist: Operations/Methods, Commands, State Machines (15)
« Web GUI Development in SOLoist: Concepts, Principles, Library (207

» Conclusions (5)

- Q&A (30))

Copyright (C) 2015 by Dragan Milicev

INTRODUCTION

BReiEc speaker. . .

s

» Full professor at University of Belgrade, School of Electrical Engineering,
Department of Computing (www.etf.rs)

* Founder and CEQO of SOL Software (www.sol.rs)

* Fields of expertise: software engineering, model-based engineering, model-
driven development, UML, software architecture and design, business
process modeling, information systems, and real-time systems

» Member of PCs of several premier international conferences on model-
based engineering: MODELS, ECMFA, and MODELSWARD

» Member of the Editorial Board of Springer’s Software and System Modeling
journal (SoSyM)

Copyright (C) 2015 by Dragan Milicev

http://www.etf.rs
http://www.sol.rs

NTRODUCTION

About my research and publications:

* Three books (bestsellers) in Serbian on OOFE C++, and UML

* Papers in journals and conferences, some contributing to modeling and UML. A short selection:

« Milicev, D., "Automatic Model Transformations Using Extended UML Object Diagrams in Modeling
Environments," [EEE Transactions on Software Engineering,Vol. 28, No. 4, April 2002

* Milicev, D.,“On the Semantics of Associations and Association Ends in UML," I[EEE Transactions on
Software Engineering,Vol. 33, No. 4, April 2007

« Milicey, D.," Towards Understanding of Classes versus Data Types in conceptual Modeling and
UML," Computer Science and Information Systems,Vol. 9, No. 2, June 2012

+ Milicev, D, Mijailovi¢, Z., “Capsule-Based User Interface Modeling for Large-Scale Applications,” IEEE
Transactions on Software Engineering, Vol. 39, No. 9, pp. | 190-1207, September 2013

« Milovanovié, V., Milicev,D.,“An Interactive Tool for UML Class Model Evolution in Database
Applications,” Software and Systems Modeling, September 201 3

- etc. (full list avallable at www.rcub.bg.ac.rs/~dmilicev)

Copyright (C) 2015 by Dragan Milicev

http://www.rcub.bg.ac.rs/~dmilicev

INTRODUCTION

About my research and publications:
* The Wiley/Wrox book on MDD with Executable UML (2009)

 Chinese translation published by Tsinghua University Press (201 |)

Moded-Drivan Development with Executable UML

Model-Driven Development with Executable UML

Executable UML BRI &

Copyright (C) 2015 by Dragan Milicev

INTRODUCTION

About my professional activities:

» 30 years of industrial experience in building complex commercial software systems

» Served as chief software architect, project manager, consultant, or developer in over
30 large industrial projects:

» With customers and partners in: USA, Germany, France, Italy, Norway, Serbia, ...

* In different domains: e-government, telecom, health and social care, customer
relationship, human resources, document management, engineering, ...

» Of different size: from SME to national-level (e.g. National Cadastre of Serbia,

National e-ID Document Issuance of Macedonia, National Civil Register of Iraq,
Sha)

Copyright (C) 2015 by Dragan Milicev

CHAPTER |
L SCHOCOES

Models as Sketches or Blueprints vs. Executable Models

Copyright (C) 2015 by Dragan Milicev

DML SCROCOES

Two schools of using and applying UML:

“Informal UML School” (Martin Fowler et al.):
UML used to:
« sketch,
« make blueprints,
« document

architecture, design, etc. of a software system.

“Formal UML School” (Bran Selic, Steve Mellor, et al.):

UML used as an executable (“programming™) language

Copyright (C) 2015 by Dragan Milicev

e INFORMAL UML SCHOGHS

Characteristics:

» UML used to sketch, make blueprints, or document architecture, design, pieces
of structure or behavior, key concepts or mechanisms, business processes/
workflows, etc.

» Used in early phases of requirements engineering, conceptualization or design
(sketches), and in late phases of design and documentation (blueprints)

» Convenlient as a vehicle to convey an idea or a message to others

* Does not require deep knowledge of UML advanced concepts and their
semantics

* Very lightweight and flexible

Copyright (C) 2015 by Dragan Milicev

e INFORMAL UML SCHOGHS

Characteristics:

« UML models used in early stages, for requirements engineering, conceptualization, or architecture and
design sketching are usually very abstract, but completely vague with semantics - can be interpreted in
many different ways, depending on the context, assumptions, viewpoint, implementation strategy, etc.

i

L %
N
7 N\
R — h
i Bk Lok | o Avabty of Bk N
} \
\
/
1/ 8.1
e —
X Wehdrow Cash Vimrrter Money Crach Batance
Lo soedor Lk b oib — [C_\D CD &_——)
— 7
/
\ /
\\ //
''''' b Ml [L _ <o “rudes 7 corcuess
N \\ ’/
\ /
\ /
| \ /
> .|/
;
e
== G"‘i@
R —
[/-J \.\
/
. '/ \\
o Lk e b s / \
.—’__—-_
[=} Ok 1IN San P ngerpr et)

" J W ol b

Copyright (C) 2015 by Dragan Milicev

e INFORMAL UML SCHOGHS

Consequence: rush-to-code syndrome!

“A pervasive unease C
bhases, a prevailing att
nts definition and design moc

that requireme

uring t

tL

de a

ne early development

mong the deve

O
©

DIEIES

S

are just documentation, and a conviction that the

'real work’ has no

. begun until code Is being

wrrtten.” [Selic et al., Real-Time Object-Oriented Modeling, Wiley,

1994

Copyright (C) 2015 by Dragan Milicev

e INFORMAL UML SCHOGHS

Characteristics:

« UML models used as blueprints of implementation artifacts usually do not carry additional (higher-
level abstraction) semantics, but simply describe the artifacts implemented in other “implementation-
level” technologies, e.g., OOPL code, database schema, implementation framework, etc.

* Lowerlevel abstraction == reduced expressiveness => models are over-specified: unnecessary
addrtional work => reduced productivity!

* Models are simple “drawings of code/schema/...”. May help in understanding the artifacts, but do
not bring additional value to the implementation process - significant additional work =>

reduced productivity!

<<FK>>
0.1 & +superDept <<FK> >
+dept assignment +members

<<Entity >> P " <<Entity>>

Department 0.1 * Employee
< <PK>>+id: Integer <<PK>>+id: Integer

* | +name: VARCHAR(SO) +name: YARCHAR(S0)
+responsibiity: YARCHAR(255) +genderID: Integer
+subDept | S<I8>>+X_name +address: YARCHAR(25S)
+getiD0): long <<IX>>=+ix_name
+generatelD() +getID(): long
+generateID()

Copyright (C) 2015 by Dragan Milicev 12

e INFORMAL UML SCHOGHS

Characteristics:

« UML models used for documentation only suffer from phase discontinuities:

- discrepancies between the real (executable) artifacts and the documentation
- documentation Is never fully up-to-date

» updating documentation Is tedious => significant unnecessary additional
work => reduced productivity

Overall consequences:

» switching to UML modeling (from just simply traditional programming/
coding) In an inappropriate way adds burden to developers and reduces
development productivity - moves us one step backwards!

* many people have been disappointed by using UML for that reason!

Copyright (C) 2015 by Dragan Milicev

it FORMAL UML SCHOCS

Solution:
« Use UML in a controlled, appropriate way - with formal, executable semantics
» Formal, executable semantics is a key to usage of a software design language:
 unambiguity of interpretation

- understanding of a concept or rule Is much easier by watching its runtime effects (runtime
semantics) - programmers usually learn a new language by experimenting with simple examples
that illustrate the runtime semantics

(otherwise, one has to map the semantics of a new concept to something (s)he Is familiar
with, In a different semantic domain; in this context of UML, this is usually an OOPL, relational
database or similar - turns modeling into “drawing code™)

« UML models become authoritative, executable artifacts - the real software!
» No more rush-to-code syndrome

» No discrepancy between software and documentation - models are accurate documentation

Copyright (C) 2015 by Dragan Milicev

it FORMAL UML SCHOCS

* A modeling language Is executable If the concepts of a modeling language have formal
semantics that enable models to be transformed completely automatically into forms that
can be executed or interpreted in a way that results in running applications.

« However, even traditional programming languages fit in this definition. What s the difference?

* Abstraction level: modeling languages, either general-purpose (such as UML) or especially
domain-specific ones (DSL), are typically more abstract, expressive and closer to the
problem domain. (Note: even classical programming languages have been increasing their
level of abstraction by time, so this is a vague and relative criterion!)

» Notation: modeling languages often use a combined visual (diagrammatic) and textual
notation, while classical programming languages use textual notations only. (This is not
not a strict criterion, erther as many modeling languages have also purely textual
notation.)

» Strictness: programs In classical programming languages must be fully complete and filled
in with details to compile - compilers are very rigid and rigorous. Models do not have to
be fully detailed, and can still remain executable (as long as they are well-formed).

Copyright (C) 2015 by Dragan Milicev

ABOUT UML AND PROFILES

« UML 1s (mostly but not fully deliberately) designed to be vague in many points, with the lack of formal
semantics and with many semantic variation points, in order to be flexible, adaptable, and usable in many ways

« fUML (Foundational Subset for Executable UML Models): an inrtiative and standard of OMG for tightening up
the semantics of some parts of UML

- UML profiles: adaptations of the core language that allow you to:

- select a subset of the language of interest for a particular domain, kind of applications, etc.

« extend the core language with new concepts, or by interpreting the semantics of the existing concepts

- define the semantics of the used concepts in a formal and executable way.

« OOIS UML - a profile for UML defined for object-oriented information systems, i.e. applications with:

« complex conceptual model (vocabulary of a domain)

* massive persistent instantiation of key abstractions (i.e., need for a database)

« complex business logic (behavior)

* rich user interface

Copyright (C) 2015 by Dragan Milicev

CHAPTER ||
ABOUT SOLolsT

A Java-Based Framework for Model-Driven Development of
Information Systems with Executable UML

Copyright (C) 2015 by Dragan Milicev

ABOUT SOLoIsT

« SOLoist Is a Java-based framework for model-driven development of web-oriented information systems with
Executable UML (OOIS UML profile)

« SOLloist is not:

« a2 UML modeling tool; instead, it uses a third-party UML tool

* an object/oriented database (although it does provide the functionality of an OO database with UML

semantics); instead, it stores the data in a standard, third-party relational database management system
(RDBMS)

* a programming language; instead, it uses Java as the implementation language of details.
» Current generation of SOLoist - G4. History:

« G, desktop,1999-200|: Rational Rose, Visual Basic

« G2, desktop, 2002-2003: Rational Rose, C++, Microsoft Foundation Classes (MFC)

« G3, desktop, 2003-2008: Rational Rose, C++, Ot

« G4, Web, 2009-2015: StarUML, Java, Google Web Toolkit (GWT)

G5 under development!

Copyright (C) 2015 by Dragan Milicev

SOLOIST DATASHEET

* plug-ins for StarUML for Java code generation for class models and state machine models

« SOLoist consists of:

 runtime environment (kind of a UML virtual machine) that provides UML runtime semantics over an APl (“UML system
calls™), object persistence, and UML reflection

* basic model library

« GUI library for rapid development with UML-semantically coupled widgets
« Development:

« UML modeling tool: StarUML™ (an open-source, free UML modeling tool)
« Target language: Java

SR ESEGliDse

« Execution:

« Application server:Tomcat or any other (e.g. Wildfly)
- DBMS: MySQL, Oracle, MS SQL Server, Sybase, adaptable to any other SQL-compliant RDBMS

« GUI framework: Google Web Toolkit (GWT)

Copyright (C) 2015 by Dragan Milicev

DEVELOPMENT PROCEDURE

* Basic development procedure: el e e v
* Develop a model in StarUML —— == |E | ¥ |
« Generate XMl for the SOLoist Runtime = B
- Generate Java code from model - |
‘1
« Write GUI code If necessary —— o
* Integrate and complile the code In Eclipse o =
Q= cliie on a VVeDb server -

« Follow the Tutorial at www.soloist4uml.com

Copyright (C) 2015 by Dragan Milicev

20

http://www.soloist4uml.com

CHAPTER Il
MODELING STRUCTURE IN

SOLoist

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
OLOIST

* Design a structural (class) model in UML and generate the app:
* generate Java code

» generate database schema using a SOLoist utility

organization

+superDept ‘ 0..1

Department | 0.1 assignment x Employee <<enumeration>>
Gender
*| +name: Text +dept +members +firstName: Text
+responsibility: Text +lastName: Text +male
+subDepts +gender: Gender +female

+dateOfBirth: Date[0..1]
+isMarried: Boolean = false
+numberOfChildren: Integer = 0
+photo: Picture[0..1]

+contract: File[0..1]

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
OLOIST

You get immediately, without any additional actions in model or code:
» all classes are persistent by default (unless you specify them differently)
* no bollerplate manual coding and annotations (everything is generated)
* direct and transparent object persistence

* no need for object ID management, all this is managed by the framework

organization

+superDept ‘ 0..1

Department 0..1 assignment * Employee <<enumeration>>
Gender
*| +name: Text +dept +members +firstName: Text
+responsibility: Text +lastName: Text +male
+subDepts +gender: Gender +female
+dateOfBirth: Date[0..1]

+isMarried: Boolean = false
+numberOfChildren: Integer = 0
+photo: Picture[0..1]

+contract: File[0..1]

Copyright (C) 2015 by Dragan Milicev

23

MODELING STRUCTURE IN
OLOIST

Compare it with using another persistence framework, based on an OOPL (e.g. Java) and its
semantics. Example:

“Every entity must have a primary key (simple, composite or auto-generated):”

@TableGenerator(name="employeeGen", table="EJB_ORDER_SEQUENCE_GENERATOR",

pkColumnName="GEN_KEY", valueColumnName="GEN_VALUE",
pkColumnValue="EMPLOYEE_ID", allocationSize=10)

@Id
@GeneratedValue(strategy=GenerationType.TABLE, generator="employeeGen")
public Long getEmployeeID() { return employeelD; }

* |s this all really necessary!

« No. It Is accidental complexity caused by a heavy influence of the underlying technology (relational
database)

Copyright (C) 2015 by Dragan Milicev

i

MODELING STRUCTURE IN
OLOIST

Complexity:

* Lssential complexity: an inevitable component of
complexity that Is inherent to the very problem domain

* Accidental complexity arises purely from mismatches In

e
_t

ne particular choice of tools and methods applied in

ne solution

VWe cannot avoid essential complexity, but we can (and
should!) reduce accidental complexity

Copyright (C) 2015 by Dragan Milicev 25

MODELING STRUCTURE IN
OLOIST

Deal with an object as usual, and think of an object as a separate identity,
residing In an abstract object space, from Its creation to Its destruction:

* Plain and natural coding
* No confusion wrt. object in memory vs. record in database

* No burden about loading the object and updating its database cop

emp Is already persistent.

Employee emp = new Employee(); No need for “persist’ or “save’.

emp.dept.set(dept); dept.members immediately includes emp

emp.destroy(); emp I1s removed from the object space (database)
Copyright (C) 2015 by Dragan Milicev 26

MODELING STRUCTURE IN
OLOIST

Compare it with using another persistence framework, based on an OOPL (e.g. Java) and Iits
semantics. Example:

@PersistenceContextEntityManager em;

public Employee createEmployee(Department d){
Employee empl = new Employee();
d.getMembers().add(empl);
em.persist(empl);
return empl;

I

The developer must be aware of the fact that the Java object and its database representation
are separate rtems that have to be kept in sync.

... Yet another instance of accidental complexity caused by the influence of the underlying
implementation

Copyright (C) 2015 by Dragan Milicev 2

MODELING STRUCTURE IN
OLOIST

You also get - generic browsing of object space (SOLoist Explorer):

000 sowom bxplorer x A Li‘g'

|\ W—]

€& - C [soloistdemo.org/CompanyOrganization/oql?q=SELECT+d%2C+d.nameX2C+d.responsibility®2C+d.superDept2C+d.members+eX2C+e nameX2C+e.gender¥k... 17

Success.

SELECTY 4, d.name, d.responsibiity, d.superDept, d.members ¢, ¢.rame, ¢.gender, ¢ dateOfBirth
FROM Department d, d.members
WHERe d.name ke ot

txecute Result format: @ HTML XLS

Result (17 rows):

d dname | d.responsibility d superDept | ¢ | ¢c.name | egender | e.dateOfBirth |
[239685023576637805 1) .SOL ’ .(nrull) |[2423806914513500128] '.\kwcmployw MALE |(null)
2a058%53215495390) WoTeeh D | Ribessopisssasasy D009 prjtea MALE |
mmmm ato Tech ‘m“" Wma?zﬁmum mmqgmmmm Newemployee | MALE | aa)
mmmmm oo Teh 'mw mmmm mgmmn Nowemployes | MALE ()
Wﬂmﬂm ato T ‘m“" Wmﬁmm mm&‘mmmw Newemployee | MALE | (ual)
mmm | Production | mmm r‘f"lm‘ . . ‘AMrijaMiscvic \MALE | (nall)
Dsfmmmn?mumm Protucion | m wum%‘&mmmm P MALE 20121116
mw |Production | Wm&nﬁm&m '[Wuzizuzl!mzz%:al:] .Scwcmployec | MALE '(null)
[2402038%2380670079) Commerce a8 3023576378051 A36451532098796100) Sanja Mitrovic FEMALE | (nall)
éﬁi‘?ﬁm&mm .g;’cn::cm | m&mﬁ‘mmm mﬁmﬁw Neweaployss | MALE |l
mwwvslzm 3’3&"’ mmmmm g%mmmmsl on MALE |(mE)

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
OLOIST

» Supported concepts:
« Classes
- Attributes
« Associations (binary associations only)
« Generalization/specialization (single inheritance only)

- Attribute types:

organization
+ Boolean
+superDept 0..1
= | +name: Text +dept +members +firstName: Text
. Reg +responsibility: Text +lastName: Text
+subDepts +gender: Gender
+dateOfBirth: Date[0..1]
« Currency +isMarried: Boolean = false
+numberOfChildren: Integer = 0
+photo: Picture[0..1

« Enumeration (user-defined)
* File (binary)

« Picture

+contract: File[0..1]

<<enumeration>>
Gender

+male
+female

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
OLOIST

* Supported concepts for attributes:

name and type
* visibility
* Initial value

« multiplicity (single- or multi-valued): affects only the database schema and management, does not impose
constraints!

organization

* unique constraint
+superDept ‘ 0..1

Department 0.1 assignment = Employee <<enumeration>>
Gender
- |P—— +dept +members +firstName: Text
+responsibility: Text +lastName: Text +male
+subDepts +gender: Gender +female
+dateOfBirth: Date[0..1]

+isMarried: Boolean = false
+numberOfChildren: Integer = 0
+photo: Picture[0..1]

+contract: File[0..1]

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
OLOIST

« Supported concepts for associations and association ends:
» associations only between classes
« name (of association or end) is optional
* aggregation (no semantic impact) and composition (with the meaning of propagated deletion)

« multiplicity (single- or multi-valued): affects only the database schema and management, does not
Impose constraints!

. V|S|bl|lt>/ organization
+superDept ‘ 0..1

- ordermg Department 0..1 assignment * Employee <<enumeration>>

Gender
x| +name: Text +dept +members | | 6 ctName: Text
. i +responsibility: Text +lastName: Text +male
4 nawgablllty +subDepts +gender: Gender +female
+dateOfBirth: Date[0..1]

+isMarried: Boolean = false
+numberOfChildren: Integer = 0
+photo: Picture[0..1]

+contract: File[0..1]

Copyright (C) 2015 by Dragan Milicev

MODELING STRUCTURE IN
OLOIST

For objects space manipulation, the SOLoist UML AP
ensures full UML semantics of actions:

Create object action (incl. constructor)
Employee empl = new Employee();

dept.members.add(empl) ; (@ISO aile)
Ve o or: dept.members immediately includes em

empl.dept.set(empl); // bot noteggzhjiﬁﬂiﬂﬂaﬁﬁﬂ
String emplName = empl.name.val(J.toString();
empl.name.set(newName) Destroy object action. Implicitly destroys a

dept .dest r'oy() X inks of the object, and sub departments |

this case (due to the composition end).
Copyright (C) 2015 by

/|

Dragan Milicev

MODELING STRUCTURE IN
OLOIST

Compare this with using another persistence framework, based on an OOPL (e.g. Java) and its semantics:

class Department {
public List<Employee> members = new ArraylList<Employee>;

}

class Employee {
public Department dept;

¥

// And both of these are needed:
dept.members.set(empl);
empl.dept.set(empl);

Problems with the expressiveness of the OOP level:
* It is the responsibility of the developer to keep the fields in sync — prone to error

« More primitive semantics: unidirectional references instead of (bidirectional) links (relationships)
Copyright (C) 2015 by Dragan Milicev

33

MODELING STRUCTURE IN
OLOIST

* Problem with using the “traditional” approach =
UML class model + actions in OOPL (or, even worse, in SQL):

semantic discontinuity: the lack of formal coupling between the elements of
different kind (e.g,, structure and behavior)

* Semantic discontinuity I1s another cause of the rush-to-code syndrome

* Another bad example of semantic mismatch causing accidental complexity
(=additional unnecessary work): DAO layer — Anemic Object anti-pattern

* Conclusion: Structural UML modeling in OOIS UML with SOLoist
eliminates accidental complexity (=> improved productivity) and does not

suffer from semantic discontinuity (= full semantic coupling)
Copyright (C) 2015 by Dragan Milicev 52

CHAPTER IV
QUERYING IN SOLOIST

OQL and Query Builder

Copyright (C) 2015 by Dragan Milicev

35

Employee

<<enumeration> >

organization O Q ‘
bsupe:Oeptl 0.1
= D.1 assignment =
" dept
t dep tmembers
FsubDenty | hame: Text = "New department”
+responsibility: Text

+gender: Gender
+dateOfBirth: Date{0..1]

+photo: Picture(0..1]
+oontract: File{0..1)

+name: Text = "New employee”

+isMarried: Boclean = false
+numberOfChiidren: Integer = 0

Gender

+male
+female

Object Query Language (OQL) is an object-oriented descendent of the Structured Query Language (SQL)

In OQL, you deal with objects of classes and with links of associations, instead of tables, records, and fields

Example: get the names and date of births of all employees of the department ‘R&D’

SELECT
FROM
WHERE

e.name, e.dateOfBirth
Department d, d.members e
d.name = ‘R&D°

The equivalent SQL query must join the tables:

SELECT
FROM
WHERE

e.name, e.dateOfBirth
Department d, Employee e
e.dept = d.ID AND d.name = ‘R&D’ //

// or: FROM Employee e, e.dept d

// or: FROM Department d INNER JOIN Employee e ..
.. ON e.dept = d.ID WHERE d.name = ‘R&D’

In case of a many-to-many association, the equivalent SQL query must join three tables (think about maintenance!):

@@

« SOQL:

SELECT e.name, e.dateOfBirth FROM Department d, d.members e WHERE d.name = ‘R&D: EﬁKaCﬂy“ﬂﬁe same

SELECT e.name,e.dateOfBirth FROM Department d, Assignment a, Employee e
WHERE d.ID=a.dept AND a.members=e.ID AND d.name = ‘R&D’

Copyright (C) 2015 by Dragan Milicev

Significantly different, especially in
case of several joins

36

+superDent l 0.1
0.1

assignment -
Department v Employee <<enumeration>>
. tdep tmembers
FsubDenls | hame: Text = "New department” +name: Text = "New employee” Senw
+responsibility: Text +gender: Gender +male
+dateOfBirth: Date{0..1)] +female
+isMarried: Boolean = false
A +numberOfChildren: Integer = 0

+photo: Picture[0..1]
+oontract: File[0..1]

Headquarters
+address: Text

» Inherrtance and specialization (down-casting) example:

select Employees of Headquarters M

SELECT e.lastName, e.dateOfBirth, h.name, h.address
FROM Employee e, e.dept:Headquarters h
WHERE

Specialization (down-casting)
Copyright (C) 2015 by Dragan Milicev 3%

« Queries can return: B08Y oo -\l — a2

« (e soloistdemo.org/CompanyOrganization/oql?q=SELECT +d%2C +d.nameX2C+d.responsibility%2C +d.superDepti2C+d.members + eX2C+e.nameX2C + e.genderk =

ame, d.responsibiity, d.superDepe, d.members ¢, ¢.name, e.gender, ¢.cateOfBits
rs

» slots, holding a value or a collection of values:

Cxecute | Result format: @ HTML XLS

SELECT e.name, e.dateOfBirth, e.dept FROM.. ———

| d | d.name | d.responsibility | dsuperDept | e | e.name | egender _edauomnh
msmﬂwsu soL (rull) mmumml New employee MALE | (null)
) ‘%cgggmzs 25‘:!“ 5495390) Info Tech ;:;:“uc: o D;c‘mm%‘ m‘ggszﬁnms 1 [E*Kggllqglm“°4§.mm,*zm ;;Jlml“:l;l: poims MALE | (null)
(D) bJ e C-tS D ees00) fafo Tech mf o emsess) e s New employee MALE | (aull
e 1315405390 IfoTech | MoEROM B reaa0s B 300157203 New employes MALE | (null)
s 12154953901 moTen O sOnsTa780s1) s 2as219824) New employes [MALE | (oal)
SELECT e, e.name, e.dateOfBirth, d FROM.. o B el o el el
= ¢ > = D113 4914295650291 Production | Dbessons66 IS 4251 sss06o09946661) Pl [MALE |2012-11-16
w}ﬂ‘-“) 205690291 Production [,Eimmgﬁ 50235766378051] F‘,‘gﬁm 2442463723581 New employee MALE | (null)
' iozn3aso21s0670079) Commeree | stz rssirmosi) eScisioomeiony | Seae Miovi FEMALE| (euld
« Queries can have parameters: T [O W Se—— e
mmsasmzw g:‘rennp:etc mlazvswum é‘:’gﬁ%ﬂxwumal Tout MALE | (nall)

SEREGRTCS diname, ..) ,
FROM Department d, d.members String ogql = "SELECT d, d.name, e, e.name, e.dateOfBirth " +

WHERE d.name like #name# "FROM Department d, d.members e " +
"WHERE d.name like #name#";
« Queries can be executed: .
BasicParameterValueStore param =

new BasicParameterValueStore();

* interactively, with SOLoist Explorer :
y P param.setParameterValue("name", Text.fromString(nameValue));

* programmatically, via the AP List<ITuple> results = Queries.executeOQL(Coqgl,param).asList();

Copyright (C) 2015 by Dragan Milicev 38

QUERYING AP

* For fetching of individual objects of a single class programmatically, there is a simple
API;

List<Department> depts =
return QueryUtils.getAllInstances(Department.CLASSIFIER);

List<Employee> employees =
QueryUtils.findInstancesBy(Employee.CLASSIFIER,
Employee.PROPERTIES.1sMarried, Boolean.TRUE,
fetchOffset, fetchSize);

// to fetch all: fetchOffset=0, fetchSize=0

Employee employee =
QueryUtils.findSingleInstanceBy(Employee.CLASSIFIER,
Employee.PROPERTIES.name, Text.fromString("John Doe"), bMustExist);

* For more complex queries, use QueryBuilder

Copyright (C) 2015 by Dragan Milicev

£l

QUERY BUILDER

« QueryBuilder is an API for building queries programmatically, using their internal representation
« Can support everything as OQL, but has a bigger expressive power

« Used mostly in the implementation of interactive searches

eo0o Compasy Organzaton

[

<« > soloistdemo.org/CompanyOrganizationExt/index, htm|
Powered by SOLoist
Departments Employees

Nome: s

Advanced soarch «

Dute of birth from: Departments:
-
Dote of birth to: ~
-
Is married: : uh New Departenant
Georder: ! E

=
» :h Production

==.hcotm-uu

Al departments
Search Reset
Adsitienal Options Resut: 1to10of1 e GE1 IS P
Employee Name Department Gender Date of birth Number of children Is married

”~
z LCh Kaehd Lptes Kasehe :b Reseach B Devecomet Femsie] ves

Export Resdt Result:- 1tolof} €< € > »>»

Status bar Copyright © 2011 - Serbian Object Laboratories (SOL) - Ucence

Copyright (C) 2015 by Dragan Milicev

import

import
import
import
import
import
import
import

public

QUERY BUILDER

package companyorganization;

java.util.Arrays;

rs

rs

.sol
rs.
rs.
rs.
rs.
.sol
rs.

sol
sol
sol
sol

sol

.soloist.
.soloist.
.soloist.
.soloist.
.soloist.
.soloist.
.soloist.

server

server.
server.
server.
server.
.uml.queries.SimpleQueryDefinition;

server

server.

.guiconfiguration.components.GUISearchResultComponent.Parameter;

guiconfiguration.components.GUISearchResultComponent.Result;
uml.queries.AssocEndTerm;

uml.queries.AttributeTerm;

uml.queries.ObjectTerm;

uml.queries.builder.QueryBuilder;

class EmployeesQueryBuilder extends QueryBuilder {

private static final SimpleQueryDefinition prototypeQuery;

@Parameter@Result("${Name}")
public static final String NAME = "NAME";

@Parameter@Result("${Department}")
public static final String DEPARTMENT_NAME = "DEPARTMENT_NAME";

@Parameter@Result("${Department}")

public static final String DEPARTMENT = "DEPARTMENT";
@Result("${}") @Parameter

public static final String DEPARTMENT_ALL = “DEPARTMENT_ALL";

Copyright (C) 2015 by Dragan Milicev

2

QUERY BUILDER

@Parameter@Result("${Gender}t")
public static final String GENDER = "GENDER";

@Result("${Date of birth}")
public static final String DATE_OF_BIRTH = "DATE_OF_BIRTH";

@Parameter
public static final String DATE_OF_BIRTH_FROM = "DATE_OF_BIRTH_FROM";

@Parameter
public static final String DATE_OF_BIRTH_TO = "DATE_OF_BIRTH_TO";

@Parameter@Result("${Number of children}")
public static final String NUMBER_OF_CHILDREN = "NUMBER_OF_CHILDREN";

@Parameter@Result("${Is married}")
public static final String IS_MARRIED = "IS_MARRIED";

@Result("${Employee}™)
public static final String EMPLOYEE = "EMPLOYEE";

Copyright (C) 2015 by Dragan Milicev

<17

QUERY BUILDER

protected EmployeesQueryBuilder() {

super(prototypeQuery);

contributions.addAl1(Arrays.asList(
new ContributePrefixMatch(NAME),
new ContributePrefixMatch(DEPARTMENT_NAME),
new ContributeEqual (IS_MARRIED),
new ContributeGreaterOrEqual (DATE_OF_BIRTH_FROM, DATE_OF_BIRTH),
new ContributelessOrEqual (DATE_OF_BIRTH_TO, DATE_OF_BIRTH),
new ContributeEqual (NUMBER_OF_CHILDREN),
new ContributeEqual (GENDER),
new ContributeIn(DEPARTMENT)

D);

includeInResultOnce(
EMPLOYEE,
NAME ,
DEPARTMENT,
GENDER,
DATE_OF_BIRTH,
NUMBER_OF_CHILDREN,
IS_MARRIED

Di;

Copyright (C) 2015 by Dragan Milicev

40

QUERY BUILDER

@0verride

name) .as(NAME) ;

gender) .as(GENDER);
dateOfBirth).as(DATE_OF_BIRTH);
numberOfChildren).as(NUMBER_OF_CHILDREN);
i1sMarried).as(IS_MARRIED);

AssocEndTerm dept = new AssocEndTerm(employee, Employee.PROPERTIES.dept).as(DEPARTMENT);

public SimpleQueryDefinition buildCountQuery() {
require(EMPLOYEE);
return super.buildCountQuery();
5
@0verride
public SimpleQueryDefinition buildQuery() {
require(EMPLOYEE);
return super.buildQuery();
s
static {
ObjectTerm employee = new ObjectTerm(Employee.FQ_TYPE_NAME).as(EMPLOYEE);
new AttributeTerm(employee, Employee.PROPERTIES.
new AttributeTerm(employee, Employee.PROPERTIES.
new AttributeTerm(employee, Employee.PROPERTIES.
new AttributeTerm(employee, Employee.PROPERTIES.
new AttributeTerm(employee, Employee.PROPERTIES.
new AttributeTerm(dept, Department.PROPERTIES.name).as(DEPARTMENT_NAME);
prototypeQuery = new SimpleQueryDefinition(employee)
.from(Cemployee, dept)
.nullable(dept);
¥

Copyright (C) 2015 by Dragan Milicev

44

CHAPTERV
DATABASE FEATURES IN SOLOIST

Optimizations, Performance, Scalability

Copyright (C) 2015 by Dragan Milicev

49

DATABASE FEATURES

 Database schema automatic update: SOl oist checks the version of the schema
in DB and does the necessary upgrade through all intermediate versions

» Model evolution problem in production: how to keep the production data in
DB when updating the schema on model change

» SOLoist utility for model evolution: does the diff-ing of two UML (class) model
versions (with the user’s confirmations or interventions) and generates an
upgrade (ALTER TABLE) script

* See detalls In:

Milovanovi¢, V., Milicev,D., “An Interactive Tool for UML Class Model Evolution In
Database Applications,” Software and Systems Modeling, September 201 3

Copyright (C) 2015 by Dragan Milicev 46

DATABASE FEATURES

» SOLloist Is constructed and prepared for high volume and scalabllity, In terms of
* data volume (hundreds of millions of objects)
» throughput (hundreds of concurrent users)

 [here are many clever optimizations in queries posed to the database, to
significantly reduce query execution time for huge volumes of data, such as;

* redundant copy of an inherited attribute value in each table of a derived
class to accelerate read queries In case of rare writes
(configure attribute’s tagged value AttrMappingStrategy)

* avolding unnecessary joins of tables

Copyright (C) 2015 by Dragan Milicev

47

DATABASE " " 7

Example:

SOLoist vs. Hibernate

performing very complex queries
spanning multiple many-to-many
associations and deep hierarchies:

N

|
A
1

| |
AL sa2s 54 a2 .
+81: Integer . +82; Integer M +a); Imteger
+stral: Text " | sevaldiText| * " | sstad: Text
B1 “b2s B2 b3 83
+51: Integer +b2: Integer 2 +b3: Integer
+strbl: Text| * * | esvb2uText| * ® | +stb3: Text
1 a2 2 <k G
+cli Integer . . +C&x Integer . . | <3 Integer
+strel: Text +5Uc: Text +5cd Text
(] *dls 02 +d3s 03
+d1: Integer - - +02: Integer | . . +0d3: Integer
+strd1: Text *svd2: Text *strd3: Text
f1 “els €2 vels B3
+¢1: Integer > +e2: Integer > se3: Integer
sstrel:Text| * * | esve2iText| * ® | estre3: Sting
Hibernate HQL FastOQL
select coumt(*) select count(*)
from E1 x1 joim xl.e2s x2 joim x2.e35 %3 from El x1, xl.e25 x2, x2.e35 x3
where xl.el > © and x3.23 > 0 and x2.¢2 > where x1.e1 > and x3.e3 > and x2.e2 >
saL sQL
select count(*) as col 8 _0_ select count(*)
from 00C elxd_ from £1 AS x1
left outer joim Al elx@_1_ on eld_.ideelx®_1_.ic join Elmels_E2 as x2 om x2.¢1_id » x.i¢
left outer joinm 81 elx0_2_ on elxd_.icdwelx®_2_.ic join E23e335_E3 as x3 om x3.e2_1d = x2.e25_ 10
left outer joim C1 elx@ 3_ on elxd_.ig-elx@ 3 .10 join £3 as _asttrsl_x3 on _attrsl _x3.icexd.eds_icd
left outer joim D1 elx@_4_ on el@_.ideelx®_4_.ic join E2 as _attrsd _x2 on _attrsl x2.icwx2.e2s_ic¢
left cuter joim E1 elx@_5_ on elxd_.idwelxd 5_.ic where xl.el>
inner join Elsels E2 e2s1_ on elx@_.ideelsl _.el ID and _asttrsl_x3.ed>

inner join OOC e2x2_ on els]
left outer joim A2 e2x2_1_
left outer joim B2 e2x2_2_
left outer joim C2 e2x2_3_
left outer joim D2 e2x2 4
left outer joim £2 e2x2_5_
inner join E2me3s £3 e3s3_

388388

left outer joim A e3xd_1_
left outer joim B3 e3xda_2_
left outer joim C3 e3x4 3
left outer joim DY eldxd_da_
left outer joim £3 e3x4_5_
where elx@_.DTYPE«'f]

and ¢lx@_5_.el>

and eXxd_5_.ed>

and e2x2_5_.e2>

238883

Copyright (C) 2015 by Dragan Milicev

25 _idwe2x2_.ic
e2x2_.id=edx2_1_.4¢
en2_.idee2x2_2_ .10
ex2_.idwedx2_3_.ic
e2x2_.id=edx2 4 _.140
ex2_.idee2x2_S_.1c
e2x2_.icweds3_.e2 10

faner join OOC e3x4_ on e353_.e3s5 _ioe-e3xd_.ic

ednd_.ideedxd_1_.ic
ednd_ idwedxd 2 .ic

e3xd_.igeedxd 3 . 1o

ednd_ idwedxd_4_.ic

e3xd_ idwedxd S5 _.4c

and _attrsl xQ.e2>

48

DATABASE FEATURES

Join Count

FastOQL Join Count (Where Count = 1)

Hibernate Join Count (Where Count = 1)

FastOQL Execution Time (Where Count = 5, Integer Level = 1)

Hibernate Execution Time (Where Count = 5, Integer Level = 1)

4000000

Copyright (C) 2015 by Dragan Milicev

45

DATABASE FEATURES

FastOQL Execution Time (Model Depth = 4, Where Count = 0)

~ \:
= g
=)
5 :

Execution Time [ms)
E &

Hibernate Execution Time (Model Depth = 4, Where Count = 0)

25000 -

'g')cmn 4

Copyright (C) 2015 by Dragan Milicev

50

CHAPTERVI
MODELING BEHAVIOR IN

SOLOIST

Operations/Methods, Commands, State Machines

Copyright (C) 2015 by Dragan Milicev

S|

OPERATIONS AND METHODS

Operation Is a feature of a class representing a specification of a service that can be
requested from any instance of that class in order to activate an associated behavior

An operation specifies that a service may be requested from any (direct or indirect)
instance of that class

At runtime, an operation of an object can be invoked. The actual arguments are then
supplied. The invocation of the operation Is manifested by the behavior specified as
the implementation of the operation

An implementation of an operation is called a method. A method is the specification
of behavior that Is activated when the operation of an object Is invoked

T a class does not attach a method to an operation of that class, the operation Is
called abstract

Copyright (C) 2015 by Dragan Milicev

o2

OPERATIONS AND METHODS

* In SOLoist, you model operations as usual in UML

* Supported features of operations:
* arguments: can be of any type (a reference to a class, to a SOLoist data type, or any Java type)
* return value: any type

* abstract operations

Addressee +adressees Message
+alias: Text x = | +subject: Text
. +body: Text
+receive(msg: Message) +attachment: File[0..*]
4 +send(to: Addressee[*])
+recipients +receivedMsgs
Department Employee 3 "
+receive(msg: Message) +receive(msg: Message)
+sender +sentMsgs
1 *

Copyright (C) 2015 by Dragan Milicev

OPERATIONS AND METHODS

In SOLoist, methods are written in “preserved sections” of Java methods generated for the class

The contents of the “preserved sections” in the generated code are preserved when the code
s regenerated — all other code will be overwritten when regenerated (do NOT change it
manually)

This ensures a strict development policy and maintenance - every artifact has its sole and
unigue “source form” (model and code) and is to be changed there.

No reverse engineering, no round-trip engineering!

public int countEmployees()

p 4 s e e <SOL 1d="06c35243-832e-4213-9195-9f7757a55651:___throw__" />
e — —— —— <LOS 1d="06c35243-832e-4213-9195-9f7757a55651:___throw__" />
{

R == <SOL 1d="06c35243-832e-4213-9195-9f7757a55651:___body___" />

gt count =20,
for (Department d: this.subDept.read()) {
count += d.countEmployees();

}

return count;
[/ ---—————- <LOS 1d="06c35243-832e-4213-9195-9f7757a55651:___body___" />

Copyright (C) 2015 by Dragan Milicev

94

OPERATIONS AND METHODS

« A method is written in Java (as the host/detail/action language), and can contain:
« control of flow (if-then-else, loops, blocks)
« UML actions, in terms of SOLoist API calls
« operation calls (with the semantics of Java - compliant to UML; polymorphism assumed by default)

- all other Java native code

Addressee +adressees Message
+alias: Text * * | +subject: Text
. +body: Text
+receive(msg: Message) +attachment: File[0..*]
4 +send(to: Addressee[*])
[l +recipients +receivedMsgs
Department Employee . “
+receive(msg: Message) +receive(msg: Message)
+sender +sentMsgs
1 -

Method of operation in UML: Messdage::send(to:Addressee[*]):
for (Addressee addr : to) {
this.addressees.add(to);

fomRecelve Cthis)s UML action “call operation” (usual invocation)

UML action “add a value to a slot” (creates a link)

Copyright (C) 2015 by Dragan Milicev 55

OPERATIONS AND METHODS

» Concurrency control:
* optimistic concurrency control: exceptions raised on concurrency conflicts

« the subject of control (detection of concurrency conflicts) are objects, not database records (another
semantic discontinuity existing in other ORM frameworks that leave the concurrency control to the DBMS)

* |solation and fault tolerance:
* transaction mechanism implemented by SOLoist
* the database transaction is issued when the SOLoist transaction is committed

» actions issued to the database are optimized and compacted: only the net effects are sent to the RDBMS
=> smaller transactions => reduced RDBMS workload => better throughput

» transactions can be nested: RDBMS transaction is issued on the topmost transaction’s commit

« UML actions are implicit transactions

* requests from GUI are also performed transactionally

Copyright (C) 2015 by Dragan Milicev

56

COMMANDS

Command i1s a (usual SOLoist UML) class whose objects represent requests for a service from
the system, issued interactively from the GUI or another external system (Command design
pattern)

When a command is issued from the GUI, an instance of the command is created and its
operation execute Is ultimately invoked. The behavior of the command is specified within the

method of this operation.

A command can have Its input pins, which are parameters whose values are provided by the
GUI dynamically, at the time of command’s activation.

A command can have Its output pins, which are results provided by the command's execution.
These values can be used in the GUI dynamically, once the execution has completed.

The elements used in the GUI to help the user understand the command are specified In its
name and description attributes.

A command can be applied on an object or a collection of objects.

Copyright (C) 2015 by Dragan Milicev

2%

COMMANDS

Command is modeled as a class, stereotyped with <<command>> and derived from the built-in class
Command (directly or indirectly).

Input and output pins are modeled as properties (attributes or association ends) of the command,
stereotyped with <<inputPin>> or <<outputPin>>

Command

+deleteOnClose: Boolean = false A

organization

+getinputPinsForMElements(): 1Siot{0..*) -

+getinputPinsForProperties(): ISIot{0..*) <<inputPin > +subDepts
+getinputPinsForRTElements(): ISiot{0..*] <<command>> +input Department
o aas erinstances): Feor(0-") CmdCountAllEmployees 0..1
4t s . 0.1 |+countEmployees(): int S
wwnsrus&o lSl':[%] ¥ MO] <<Wﬁn>>+0utput: Intmef P) +5uperDept
+getinputPin(name: String)

+getinputPin(ugName: String, ds) #execute()
+getinputPins(el): ISiot{0..*]
+isAppicableOn(el): booiean

HACTRCAeON(r%, second); booesn Method of CmdCountAllEmployees: :execute():

rstParam(el o
Immm“""” - '°'wp."?§&d frst) protected void execute() {

:mwmgﬁg:m<) Department d = this.input.val();
+setinputPins(frst, second) kG (d = ﬂU-H.) ‘{
: 0 int count = d.countEmployees();

#hande) this.output.set(Integer.valueOf(count));

+applyOn(el) }
)
+applyOnAli(el: IBlement(0..*])

-

! Copyright (C) 2015 by Dragan Milicev 58

COMMANDS

* Generic or built-in commands are commands that embody certain UML actions upon the object

space. I hey are implicitly defined in the system and accessible from the application. They are
part of the SOLoist UML model library.

« Domain-specific commands represent entry points to the implementation of the specific
functionality of the system, not directly supported by the execution environment and generic
commands. They are introduced into the model by the modeler.

« Generic commands in SOLoist:

(mdCreateObject CmdAddValueToSlot*
(mdCreateObjectOfClass CmdRemoveValueFromSlot*
CmdDestroyObject CmdSetSlot*

CmdCloneObject CmdReadS1ot*

(mdCopyslots CmdCreateObjectAndLinkToOne
(mdReorderValuesInSlot CmdCreateObjectAndLinkToTwo
(mdMoveValuelnslot CmdCreateObjectAndLinkToObject
ik Mtidodse et
CmdClearSlot* ity

Copyright (C) 2015 by Dragan Milicev

&%

 Advantages of using commands (Command DP):

COMMANDS

encapsulation of business logic
clear architecture

generic handling of user's requests
dynamic configuration

logging

authorization (access rights)

encapsulation of common maintenance:

transaction mechanism
locking
parameters processing

exception handling

Copyright (C) 2015 by Dragan Milicev

TNy

Domain Concepts

Commands

GUI Config

60

STATE MACHINES

» State machines are often very useful for modeling event-driven behavior of entities
whose reaction on an incoming stimulus depends not only on the kind of that stimulus,
but also on the history of the previously received stimul, 1.e., on the current state of the
recelver.

* |n essence, they model the lifetime of the entity in terms of states and transitions.

« SOLoist supports hierarchical UML state machines, with nested states and submachines.
4 To ™

place [thostisComplete()] / host. setincompleteCommenty()
save
<exit> >
reject
> Created <<entry>> [Open \
‘ initiate : place [host.isCompiete()] indude / Active
\ o3
compiete
remove <<exit>>
canced
4 Cosed N\
remave / host.archive() entry/host freeze()
d./g_ exit/host.unfreeze()
= &=
o
_ y

Copyright (C) 2015 by Dragan Milicev

STATE MACHINES

Main state machine diagram for order processing (lifecycle of objects of class Order):

r =)

place [!'host.isComplete()] / host. setIncompleteComment()
save
<<ent>>
reject
,/ Created <<entry>> [Open \
. — initiate : place [host.isComplete()) indude / Adtive

\ o0
complete
remove <<exit>>
cancel
2 Closed)
i entry/host.freeze()
@(remove / host.archive()
(Canceled)
N
_

Included sub-machine diagram (Active):

.
Copyright (C) 2015 by Dragan Milicev 62

STATE MACHINES

Supported concepts:

 Expressions used in guards and actions: host refers to the host object

* Triggerless transitions: enabled as soon as the source state completes

* Primitive states

« Composite states

* Initial pseudo states

» Choice pseudo states (optional else branch)
* Final states

 Submachines

 Entry and exit points

« Exit from state on timeout

Transitions, with triggers, guards, and actions: trigger[guard]/action

Not supported: history, concurrency (fork/join/regions)

Copyright (C) 2015 by Dragan Milicev

7 TOP
place [!'host.isComplete()] / host.setIncompleteComment()
save
<<ent>>
reject
/ Created <<entry>> / Open \
. initiate : place [host.isComplete{)) indude / Adt
__
K L)
complete
remove <<exit>>
canced
4 Closed N\
host.archi entry/host.freeze()
@(remove / host.archive() ' \
(Canceled) < Completed)
NG
.
63

STATE MACHINES

« An SM is normally modeled as a behavioral feature attached to a class called the host class.
+ The SM then describes the lifecycle of objects of that host class.

« At runtime, each object of the host class, called the host object, can change its current state according to the definition of the
SIM

« If an SM Is not associated with a class in the model, and submachines are typically stand-alone modeling elements, the host class
of the SM or submachine is specified through the HostClass tagged value available in the SOLoist profile.

» The behavior specified with an SM is ensured by the Java code generated for the SM (the “SM class™).

« The SM class is a stateless pure Java class, while the state has to be embodied in the host class (object) (Strategy design patter
with a stateless Strategy, the SM class playing the role of the Strategy).

* In order to implement the necessary behavior, methods of the SM class call back methods of the host class to:
* read the current state of the host object,
« execute guard conditions and actions on transitions,
« change the current state of the host object,
« perform other auxiliary processing, such as optional locking, logging, setting the timeout, etc.

- To trigger the state machine and process it, call the operation of the SM class:

boolean process (Host(Class hostObject, String triggerName);
Copyright (C) 2015 by Dragan Milicev 64

CHAPTERVI
WEB GUI DEVELOPMENT [N

SOLOIST

Concepts, Principles, Library

Copyright (C) 2015 by Dragan Milicev

LONCERTS

GUI components: ready-to use building blocks from the SOLoist library, configurable and fully coupled

with the UML object space

Input and output pins:“‘ports’ of components for receiving and sending messages

Wires: connectors between ports

Departments details element
Data flow Select Department: Mo _!:Em,,g
= é‘ﬁ SOoL Va-l_ U@ | Responduiy:
® zﬁb Headquarters —8
@ z"h R&D
& :"b Production ”e'“bi
- z Jovan Viadic

oy
® ‘b Computer SGence
g = ® Srdjan Lukovi
Py (17 jan Lukovic
@ ‘b Quality Assurance
“u 3 Zarko Mijailovic
-y
= e
“b Commerce

@

@)
8h soes
sps=t yvalue
ployee ms-'epamnent
Copyright (C) 2015 by Dragan Milicev

LONCERTS

» Capsule: a profiled structured class that models a simple Ul
component or a coherent Ul fragment of logically and functionally
coupled components or other fragments with a clear interface.

Powered by SOLoist

ERE D-lllcensures:
Home page 8
Employee details § oropn racev

Name: —.Draqan Mivcey I
fth:

Date of &
,,,,,, —&
. A8l

B fic pslilation emp:Employee ...

* proper abstraction

SGiRErEnt potential for reuse T""“”‘ =

Copyright (C) 2015 by Dragan Milicev 67

LONCERTS

* In the current version of SOLoist, a capsule is defined as a pure Java class in code tha extends the built-in class Capsule:

public abstract class Capsule {
protected GUIContainerComponent root;

protected Capsule(GUIContainerComponent parent) {
this(parent, false);

protected Capsule(GUIContainerComponent parent, boolean deferred) {
root = createRoot();
1f (parent != null)
parent.add(root);

if (!deferred)
build();

protected Capsule(Capsule parent) {
this(parent, false);

Copyright (C) 2015 by Dragan Milicev

68

LONCERTS

protected Capsule(Capsule parent, boolean deferred) {
root = createRoot();
1f (parent !'= null)
parent.root.add(root);

1f (!deferred)

buildQ;

protected GUIContainerComponent createRoot(){
return GUIPanelComponent.createFlow(null);

public abstract void build();

Copyright (C) 2015 by Dragan Milicev

69

LONCERTS

public class EmployeeDetailsGeneral extends Capsule {

private GUIRelayComponent employeeRelay;

public ISlot ipEmployee(){ 4—
return _employeeRelay.ipRela :

i3

public EmployeeDetailsGeneral(GUIContainerComponent parent)
super(parent);

@0verride
public void build() {
employeeRelay = GUIRelayComponent.create(root);

Home page 8
Employee details § orsgan macev
General Departmant

Name: Dragan Miscev []
Date of burth:

Is married: v

Gender: Male

Number of chidren: 3

-
Departesent :h Headquarters 9

No file

Contract:

=
Photo:

Remove | Upload 10

GUIPanelComponent wrapPanelGeneral = GUIPanelComponent.createHorizogtal(root);

GUIPanelComponent panelGeneral = GUIPanelComponent.createTable(wyapPanelGeneral);

panelGeneral .setStyle("tablePanels");

GUILabelComponent.create(panelGeneral, "Name: ", 0, 0);

Powered by SOLoist

GUIEdit employeeNameSlotComponent = GUIEdit.createField(DanélGenerql. Employee.PROPERTIES.name, @, 1);

Copyright (C) 2015 by Dragan Milicev

/70

D)

LONCERTS

GUILabelComponent.create(panelGeneral, "Date of birth: ", 1, 0);
GUIEdit dateSlotComponent = GUIEdit.createField(panelGeneral, Employee.PROPERTIES.dateOfBirth, 1, 1);
dateSlotComponent.setSize("167px", null);

GUILabelComponent.create(panelGeneral, "Is married: ", 2, 0);
GUIEdit isMarriedSlotComponent = GUIEdit.createField(panelGeneral, Employee.PROPERTIES.1isMarried, 2, 1);

GUILabelComponent.create(panelGeneral, "Gender: ", 3, 0);
GUIEdit genderSlotComponent = GUIEdit.createField(panelGeneral, Employee.PROPERTIES.gender, 3, 1);

GUILabelComponent.create(panelGeneral, "Number of children: ", 4, 0);
GUIEdit numOfChSlotComponent = GUIEdit.createField(panelGeneral, Employee.PROPERTIES.numberOfChildren, 4,

GUILabelComponent.create(panelGeneral, "Department: ", 5, 0);
GUIInput departmentGenerallist = GUIInput.createlList(panelGeneral, Employee.PROPERTIES.dept);
departmentGenerallist.setlLayoutData(TablelLayoutData.create(5, 1));

GUILabelComponent.create(panelGeneral, "Contract: ", 6, 0);

GUIPanelComponent panelFile = GUIEdit.createFile(panelGeneral, Employee.PROPERTIES.contract, true, true);
panelFile.setLayoutData(TableLayoutData.create(6, 1));

Copyright (C) 2015 by Dragan Milicev

A

LONCERTS

panelFile.setLayoutData(TableLayoutData.create(b, 1));

GUIPanelComponent wrapPicturePanel = GUIPanelComponent.createVertical (wrapPanelGeneral);
wrapPicturePanel.setStyle("photo");
GUILabelComponent.create(wrapPicturePanel, "Photo: ", TablelLayoutData.create(@, 2));

GUIPanelComponent panelPicture = GUIEdit.createFile(wrapPicturePanel, Employee.PROPERTIES.photo, true,
true);

// Wires (“bindings”):
GUIComponentBinding.create(employeeRelay.opRela employeeNameSlotComponent.ipElement(),

dateSlotComponent.ipElement(),
1sMarriedSlotComponent.ipElement(),

Powered by SOLoist

genderSlotComponent.ipElement(),
numOfChSlotComponent.ipElement(),
panelFile.ipElement(),

Home page 8
Employee details § orsgun macev
General Department

Photo:

departmentGenerallList.ipSlotValueElement(),

s married: v

Gendes: Male

panelPicture.ipElement());

Number of children: 3
-
} Departeent :h Headquarters 9

No file

Browse
Contract:

Remove | upload 1 0

Mus b Copyright © 2011 - Serbiam Object Laboratories (SO

Copyright (C) 2015 by Dragan Milicev

V5.

LONCERTS

 GUI item configuration setting Is a set of presentational and behavioral parameters defined for one
particular kind of elements in the system:

icons (small, large, for drag-and-drop, etc.)

texts that are displayed as the name, type, description, label, and tip of the element

how sub-nodes in a tree view are obtained from the element

the behavior on double mouse click on the element

» Elements can be objects of classes, but also elements of the UML model (e.g. classes, properties, etc.),
accessible through UML reflection

« At runtime, GUI item settings are objects of an UML built-in class (from SOLoist model library)

« A GUI item configuration setting can be a sub-setting of another setting, meaning that it inherits all the
parameters from the latter, but it can also redefine (i.e., override) any of the parameters, specifying
different appearance or behavior.

Copyright (C) 2015 by Dragan Milicev

/3

LONCERTS

« GUI context is a collection of GUI item configuration settings that define the presentational
parameters for one part of the system's GUI.

« A GUI context can be a sub-context of another context, meaning that it inherits all the
configuration settings from the latter; but it can also redefine (i.e., override) any of the settings.

+ At runtime, GUI contexts are objects of an UML built-in class (from SOLoist UML model
library)

Copyright (C) 2015 by Dragan Milicev s

LONCERTS

// Object setting for department

GUIObjectSetting department0S = GUIObjectSetting.create(application.getContext(), Department.CLASSIFIER);
GUIPictureFeature.createSmallIcon(departmentQ0S, "res/img/CompanyOrganizationIcons/3.01_Departmentl.png");
GUITextFeature.createName(department0S, "name");

GUINavigatorFeature.createSubnodes(department0S, "subDepts");

// Object setting for employee

GUIObjectSetting employeeOS = GUIObjectSetting.create(application.getContext(), Employee.CLASSIFIER);
GUIPictureFeature.createSmallIcon(employee0OS, "res/img/CompanyOrganizationIcons/3.03_MaleEmployee2.png");
GUITextFeature.createName(employeeOS, "name");

// Tooltip for department

GUITextFeature tooltipDepr = new GUITextFeature();
tooltipDepr.setFixed(true);
tooltipDepr.setTextValue("Double click to see details");
department0S.addFeature(tooltipDepr);

// Tooltip for employee

GUITextFeature tooltipEmpl = new GUITextFeature();
tooltipEmpl.setFixed(true);
tooltipEmpl.setTextValue("Double click to see details");
employeeOS.addFeature(tooltipEmpl);

Copyright (C) 2015 by Dragan Milicev

75

LONCERTS

// Bindings feature for Department (double click)

GUIBindingsFeature bfDepartment = new GUIBindingsFeature();
GUIComponentBinding.create(bfDepartment.opDoubleClick(), departmentPanel.1ipDepartment());
GUIComponentBinding.create(bfDepartment.opDoubleClick(), departmentPanel.ipShow());
department0S.addFeature(bfDepartment);

// Bindings feature for Employee (double click)
GUIBindingsFeature bfEmployee = new GUIBindingsFeature();
GUIComponentBinding.create(bfEmployee.opDoubleClick(), employeePanelTab.1ipEmployee());

GUIComponentBinding.create(bfEmployee.opDoubleClick(), employeePanelTab.ipShow());
employee0S.addFeature(bfEmployee);

S laistensures:
» easy, but flexible customization

» consistent appearance and look-and-feel throughout the application

* |ess errors

Copyright (C) 2015 by Dragan Milicev

76

PRINCIPLES

Proper and full semantic coupling of GUI and object space (no semantic discontinuities):

|. data binding of components:
GUIEdit.createField(panelDeptDetails, Department.PROPERTIES.name)

GUIInput.createlist(detailsPanel, Department.PROPERTIES.members)

Departments details
Select Department:

e é‘b SOL
= :"b Headquarters
® g reo
e fn Production

& :"h Computer SGence

z Jovan Viadic

— "
e Iy Srdjan Lukovic
- ‘b Quality Assurance

@i 8 Zarko Mijailovic

e ““h Commerce
bl
-
:ﬁ Sales

o
:b Support

-

Copyright (C) 2015 by Dragan Milicev

[7

PRINCIPLES

Proper and full semantic coupling of GUI and object space (ho semantic discontinuities):

2. coupling with commands:

GUIButtonComponent btnCreateEmpl = GUIButtonComponent.create(departmentButtonPanel, "Create Employee");

btnCreateEmpl.setStyle("button™);

CmdCreateObjectAndLinkToObject createEmplCommand = new CmdCreateObjectAndLinkToObject();

createEmplCommand.setClassName(Employee.CLASSIFIER);

createEmplCommand. setAssocEndName(Department.PROPERTIES .members);
createEmplCommand. setType(Department.CLASSIFIER);

btnCreateEmpl.setCommand(createEmplCommand);

GUIComponentBinding.create(departmentTreeView.opValue(), btnCreateEmpl,
CmdCreateObjectAndLinkToObject.PROPERTIES.target); Departments details

Select Department:
e g sou
= :”b Headquarters
® zﬁh R&D
e :nh Production
) “-:.h Computer Sdence
© fb Quality Assurance
© gy commerce

[

@h)

=
zb Sales
zﬂﬂ Support

wmi»;w MM

Copyright (C) 2015 by Dragan Milicev

z Jovan Viadic

z Srdjan Lukovic

z Zarko Mijailovic

/8

Behavior:

PRINCIPLES

When such a component receives a new value (a reference to the host object) on its input pin, it issues an AJAX request

to the server and fetches the value of the configured slot to display.

If the component is an edit component, it issues a Write Slot request to the server when input value is changed.
Inbut components do not change the object space, but provide the user’s input or selection to its output pin.

A button receives command parameters on its input pins.VWhen pressed, It issues a request to execute the attached

command on the server, passing the parameters to the corresponding input pins of the command.

Departments details

Select rtment:

= “‘% SOL
= :'h Headquarters
© g reo
e znb Production
@ 50 Computer Science
@ :“b Quality Assurance
-

~—
© Commerce

2

S soes

-
zn Support

ployee Create

Ul Layer

3 Jovan Viadic

z Srdjan Lukovic

z Zarko Mijailovic

Object Space Service Interface

/ Object Space Layer

Copyright (C) 2015 by Dragan Milicev 79

PRINCIPLES

Consequences and features:

Notification mechanism: for each change in the object space, SOLoist runtime notifies all GUI widgets
In the same user’s session (In which the transaction has been performed) — the widgets are updated
automatically, no need for any programming!

No semantic discontinuities
“Single-page”’ application paradigm
The entire application loads in a couple of seconds

Then, the Ul is very fast and responsive (immediate response for entire static contents), as in desktop
applications

Significantly reduced network traffic and load for the server, and more workload for the client
(dedicated to GUI and one user session anyhow)

Deferred (lazy) loading of pieces of application is possible (load on demand)

Dynamic contents is also supported: fetch the contents of a capsule from the server, on each request

Copyright (C) 2015 by Dragan Milicev

80

LIBRARY

Rich library of built-in components
Custom-built components are also possible

Sample applications:

Tabs and Layouts Deck and Layouts |

- a » L D
-muedd Fow Table Dotk Xy GUR abeiComporect Some

SOLoist Wizard

GUIHTMLComponent -

GUIHTMLComponent *

Submit Person Edit Person Details Persons Table

St Sdner Wong
Name New Person
] wu-.n Tree Tabie Foais uu.mnu-- T Choose persoa: J

Cander - NaTe | " Pesroe Nare Candar
- —
Age: Cander - Jarme Roe Jarvn Fom Mo -
Date of ey e > G Ame Smth Avne S fevae -
Wit (] Date of bemy: SONT a . , - —
New Peryom Neow Merwon *Toe -
hecon wo s marmed: ¥ Wesght) '\ 72 ") J
[Create Persen | Clewr Form | Reset Form | » mared © ko Mo Mcko Mctove e -
: Paud Jobson Paud Joheaon Maie .
- . 1
o Do Jobn Doe Maie -

Jwekprent
& Readonly helds
-V a:’:vnc—: — " —

St wwee oo

& e Persen

:\‘-.bu\'-ur--. Vicho M

Copyright (C) 2015 by Dragan Milicev 8

LIBRARY

Association Editor Bank Advisers

Sample applications:

Persons and Bank Accounts

Perwont Perscn's Berk Accourts Acroavt Deta b 'l—zm“ = } Bank Advrer Name ‘Bank Name

r] Needen | M%121223 ‘ - — = —_
zxm-muxn e &b Amne Smith Money
- Amosst; | 1320.00 & 7201 johnson [Pust sohwon Money benk
4 A0 STN Age: 31 ' b=

: Gark sorse:| Maney Best & 5hn Doe | John Doe Money benk

.:M'vmo\p:ﬂ

-
A“mmm:n -
& et doveson agu: a3 B e e

W Jobn Dos Age: 37

Creste Accourt for Fervas

LTI Dynamic Panel

Search by Bank Advisars: persoa: Choose person: Asne Seeh = | Bank:
Narme - Name: Anne S'Mh
Cender .L' ‘ A P ’ Namwe: Aevve Smah s married? NO
Date of birth | Bm‘c Smitn ‘ Gender: Ferue -
et - =
: 1081
Older than Date of birth 108
‘ Meight [m]: 174
Younger than (m} —
Is marned: ol
[ewcn | hese il 11 e
Addional Options Result: 1 to 2 of 2 << >3
Person Cender Date of barth Age Is married?
alanne Roe Male Sep 2, 1987 25 No
z New Person Female Mar 1, 2012 24 Yes
Export Result Result 1to2o0f 2 << < > >>

Copyright (C) 2015 by Dragan Milicev

82

« Sample applications:

LIBRARY

Copyright (C) 2015 by Dragan Milicev

CHAPTERVII
CONCLUSIONS

Copyright (C) 2015 by Dragan Milicev

84

CONCLUSIONS

Model-driven development with executable UML and SOLoist:

ensures proper usage of UML with full power

eliminates discontinurties due to:
» proper and formal coupling of different kinds of details (semantic discontinuities),
» proper and formal coupling of elements of different level of detalls (scope discontinuities),
* use of the same linguistic environment in all phases (phase discontinuities)

raises the level of abstraction in software development, both in conceptual modeling,
implementation of business logic, and Ul development

significantly reduces accidental complexity existing in mainstream technologies
improves development productivity

reduces mistakes and makes maintenance easier

Copyright (C) 2015 by Dragan Milicev

85

SOLOIST REFERENCES

SOLoist Is a mature, stable, robust, and scalable product that has been applied In

tens of large-scale international projects; a selection: -

» Workshop Management
System (RailConsult, Germany)

* Engineering Drawings
Management System (RCData,
Germany)

 The Analysis of VHF/UHF,
Radar; and Radio-Relay
Services (Serbian Air Traffic
Control Agency)

- Event Management System
(Indas, Serbia)

« Human Resources System
(Government of Serbia)

« National Real-Estate Cadastre
(Government of Serbia)

» First-Aid Assistant (QMSoft,
Norway)

« Student Assessment System

* Personal Training Organizer

« Transport Bidder (UK)

 National Civil Register System

« Trainers Management System

EvMaS

— Lo

* Real Estate Agency Customer- = ELE 5 e e

Relationship System (Quartett, -
Norway) —g—

(HCR, Norway)

(IMG, Norway)

(G&D, Germany)

._l Y 4 : & 2
\ "4
PR\

A\

(Norwegian People’s Aid)

I‘ l
| J 1

//////////

Copyright (C) 2015 by Dragarrrrmmecy

www.soloist4uml.com

Q&A

Thank you for your attention!

Copyright (C) 2015 by Dragan Milicev

S/

http://www.soloist4uml.com

