

Paradoxes of API Design

Jaroslav Tulach
NetBeans Platform Architect

Motto

Just like there is a difference
between describing a house and
describing a Universe, there is a
difference between writing a code
and producing an API.

Learn More

http://www.apidesign.org

Book with proper explanation!

Paradox

• Crossing the knowledge horizon
> Fear of unknown
> I know it “all” mode

• Expectation vs. Reality
> The less “fear” the more paradoxes

• Software knowledge
> School
> In-house development
> Framework

Is paradox unnatural?

Who Are Your Users?

Rationalists?

Empiricists!?

Clueless!

Selective Cluelessness
One cannot understand everything

• Understanding is limited
> takes time
> brain is finite

• Not necessary to understand
everything
> Linux, Apache, MySQL on the stack
> Learn just the API facade

• Minimize Understanding!
• Make it increasable!

http://wiki.apidesign.org/wiki/Cluelessness

What is API?
Just like writing a book

• One writer
> Design in committee?

• Many readers
> Unknown to the writer
> Envisioned via use-cases

• Best-seller
> Speak clearly
> Built up on reader's knowledge
> Keep consistency

http://wiki.apidesign.org/wiki/APITypes

Maintaining an API
Develop and sustain!

• Write once and publish
> Creativity is good
> Strive for elegance

• Switch to sustaining mode
> Preserve made (unknown) investments
> Polish
> Promote

• Incremental API Design
> Get ready for evolution

http://wiki.apidesign.org/wiki/Evolution

Quality of an API?
3 sides to every API
• Writer's point of view
> Sacrifice
> Elegance is the least priority

• Users' point of view
> API usage shall lead to “nice” code
> Upgrade breaks no existing code

• Essential API “goodness”
> Correctness (via usecases)
> Stability (via tests)
> Isolate writer and reader

http://wiki.apidesign.org/wiki/3SidesToEveryAPI

Good Technology
Holy Grail every vendor seeks

• Coolness
> Attracts attention
> Otherwise useless

• Time to Market
> Achieve more by doing/knowing less
> Cluelessness

• Cost of Ownership
> Evolution
> Compatibility

http://wiki.apidesign.org/wiki/Good_Technology

Time Matters
Compatibility with previous releases

• Source compatibility
> JavaScript, PHP – no binaries
> Knowing the language is enough

• Binary compatibility
> JAR, object files, assemblies
> Understand the ABI rules

• Functional compatibility
> Tests, tests, tests

• The invisible job
http://wiki.apidesign.org/wiki/BackwardCompatibility

Source compatibility
What compiled needs to compile

• Source compatibility gotchas
> Making protected method public
> Adding overloaded methods
> Wildcard imports collisions

• Beware of “patch” compatibility
> Close proximity of MediaWiki

http://wiki.apidesign.org/wiki/BackwardCompatibility

Binary compatibility
What linked together needs to link
• Most important type for Java, C, etc.
> Compile with oldest vs. run with newest

• Some paradoxes
> Making protected method public is OK
> Adding overloaded methods is OK
> Wildcard imports collisions cannot happen

• Some gotchas
> Changing type of field or method
> Adding virtual method in C++

• Signature testing tools
http://wiki.apidesign.org/wiki/BackwardCompatibility

Functional compatibility
The ultimate goal is that the system shall work!
• Automated tests
> Test coverage
> Sample API usage

• Multi-threading
> Never call foreign code with a lock
> Beware of re-entrant calls
> Emulate deadlocks in tests

• Memory management
> Injection of references
> Test for proper clean up with assertGC

http://openide.netbeans.org/tutorial/test-patterns.html

Factorial

Demo

Client vs. Provider
Evolution is different

• API for clients to call
> “Open space”
> Can grow with time

• API to implement
> Cannot change
> A “fixed point”

• Don't mix
• Compose
> PropertyChangeListener and Event

http://wiki.apidesign.org/wiki/ClientAPI

Code Against Interfaces
The Java misinterpretation

• Review API before publishing
• Recognize API from implementation
• Old advice
> Interface means abstract definition
> Not Java interface keyword

• Evolution aspects
> Interfaces better for “fixed points”
> (final) classes better for “open spaces”

http://wiki.apidesign.org/wiki/Chapter_6

Maintenance cost
How hard is to maintain an API?

• API happens
> Distributed teams need it

• No users => no bugs => no work
• Feature requests
> Let your users implement them

• Bugs
> Request automated test by reporters

• Maintaining an API is simpler than
maintaining code with no API

http://wiki.apidesign.org/wiki/CodeInjection

API Review
Rejecting “ugly” API changes?

• Allow anyone propose API change
> Public rules

• Checklist
> Use-case driven
> Enough test coverage
> Properly documented
> Backward compatible

• Give up on beauty
> API design is not art!

http://wiki.apidesign.org/wiki/CodeInjection

Alternative Behavior
Balance bug fixes and compatibility

• Compile-time
> New constructor, factory, setter

• Deploy-time
> Per VM configuration

• Side by side
> Copy the old class into new
> Prevents mutual exchange

• Runtime-time
> Inspect caller's expected environment

http://wiki.apidesign.org/wiki/AlternativeBehaviour

Modularity
Exactly specify code's environment

• Code does not live in vacuum
> Needs appropriate environment

• Libraries evolve in time
> Identify them with version number

• One can always mimic old environment
> Alternative Behaviors
> Emulation layers
> Bridges

http://wiki.apidesign.org/wiki/Modularity

APIs Are Like Stars
Sent your old API to black hole!

• Can one get rid of old API?
> While keeping backward compatibility?

• Yes, due to modularity
> Release new library version
> Mimic old behavior until clients migrate
> All migrated => old behavior is gone

• Place for beauty
> Old, ugly API can compatibly disappear

http://wiki.apidesign.org/wiki/Star

Research Field
Place for Rationalistic Souls

• NP-Complete problems
> 3SAT to Modular configurations

• Verification
> Signature checks
> Is an upgrade safe?

• Language Design
> Modifiers are misleading
> Distributed Modularity

http://wiki.apidesign.org/wiki/LibraryReExportIsNPComplete

Seek for More

http://www.apidesign.org/

Q&A

