
Software Industrialization

A Perspective on MDA®

David Frankel Consulting
df@DavidFrankelConsulting.com

www.DavidFrankelConsulting.com

Portions adapted from the book
Model Driven Architecture: Applying MDA to Enterprise Computing

David S. Frankel

© 2003 David Frankel Consulting, All Rights Reserved

mailto:df@DavidFrankelConsulting.com
http://www.DavidFrankelConsulting.com

Software Industrialization and the New IT- © 2003 David Frankel Consulting 2

Agenda

� The Demands of the Virtual Enterprise

� MDA: Industrializing Software

� Informal vs. Formal Modeling

� Future MDA Directions

Software Industrialization and the New IT- © 2003 David Frankel Consulting 3

Agenda

� The Demands of the Virtual Enterprise

� MDA: Industrializing Software

� Informal vs. Formal Modeling

� Future MDA Directions

Software Industrialization and the New IT- © 2003 David Frankel Consulting 4

Increased Complexity Facing IT

Uniform
User

Devices

Support Business
Functions

Within the Enterprise

Fat
Clients

Web
Clients

Wireless
Handhelds

Telephone
Keypads

Support Business
Functions

Within the Enterprise, C2B, and B2B

Complexity

Software Industrialization and the New IT- © 2003 David Frankel Consulting 5

Value Chain Driven Business
Rapid Assembly of Value Chains

Building Contractor
Legal Services

Financing
Home Supplies

Title Services
Architecture

Software Industrialization and the New IT- © 2003 David Frankel Consulting 6

Issues

� Building, updating, and integrating these
complex distributed systems is labor-
intensive
� Easy to use a good application server in an

unscalable fashion

� Many projects fail
� Others have pointed this out

Software Industrialization and the New IT- © 2003 David Frankel Consulting 7

Agenda

� The Demands of the Virtual Enterprise

� MDA: Industrializing Software

� Informal vs. Formal Modeling

� Future MDA Directions

Software Industrialization and the New IT- © 2003 David Frankel Consulting 8

MDA and Industrialization

� Accelerates the trend toward automating
low-level programming

� Applies principles of industrial
manufacturing to achieve efficiencies and
automation
� Formal blueprints

� Components

� Patterns

� Crawl, walk, run�a gradual change

Software Industrialization and the New IT- © 2003 David Frankel Consulting 9

Bringing Model-Centrism to
Intermediate Tiers, EAI and B2Bi

� Part of general trend to raise the abstraction
level

� Models as development artifacts
� Not simply blueprints for humans

� Already well-established for front and back
ends
� WYSIWYG GUI modeling and data modeling

� Hand coding no longer predominates

� But tuning allowed

� Wizards vs. models

Software Industrialization and the New IT- © 2003 David Frankel Consulting 10

Component-Based Development

� Interchangeable components and scientific
management were the keys to the industrial
revolution

� More than objects: Independently
deployable

� Excellent source: Business Component
Factory, by Peter Herzum and Oliver Sims

� Service Oriented Architecture
� Driven by value chain imperative

Software Industrialization and the New IT- © 2003 David Frankel Consulting 11

Design Patterns

� Patterns at the technical level
� Such as Java Blueprints

� Best practices for implementing components or
a set of interacting components

� Some patterns make sense at the level of
business semantics
� Such as the Observer pattern (Gamma et al)

Software Industrialization and the New IT- © 2003 David Frankel Consulting 12

Automatic Pattern Replication

� MDA generators encapsulate pattern
knowledge
� And apply patterns automatically

� Technical patterns are the most amenable

� Repetitive hand-coding of each pattern instance is
inefficient

� Patterns community is coming around to this view
� e.g. John Crupi

� Generators can enforce large scale patterns or
architectural styles
� Richard Hubert, Convergent Architecture

Software Industrialization and the New IT- © 2003 David Frankel Consulting 13

Using Value Object Design Pattern to
Set Attributes

Client

Value
Object

2. One remote invocation
Façade
Object

1. Multiple local invocations

EJB
Component

3. Multiple local invocations

Software Industrialization and the New IT- © 2003 David Frankel Consulting 14

Façade
Remote
Interface

Value
Object
Class

Generator

Bean
Interrface

Façade
Class

Bean
Class

= completely generated

= partially generated

SavingsAccount

interestRate : Float

<<BusinessEntity>>
CheckingAccount

minBalance : Float

<<BusinessEntity>>

Account

id : String
balance : Float

<<BusinessEntity>>

Customer

id : String
lastName : String
firstName : String
socSec# : String

<<BusinessEntity>>

1..*

1

+account

1..*

+customer1

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

{disjoint }

Model of Customer Entity

A Generator Applying the Value Object Pattern

Software Industrialization and the New IT- © 2003 David Frankel Consulting 15

Other Advances Toward Efficiency

� Middleware
� Raises the abstraction level of the platform

� Declarative Specification
� e.g. setting transaction properties in component

descriptors

� Enterprise Architecture
� Separation of concerns

Software Industrialization and the New IT- © 2003 David Frankel Consulting 16

Middleware Narrows the Abstraction Gap

CheckingAccount

minBalance : Float

<<BusinessEntity>>

Account

id : String
balance : Float

<<BusinessEntity>>

Custom er

id : String

<<BusinessEntity>>

1..*

1

+account

1..*

+custom er1

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

SavingsAccount
<<Business Ent ity>>

Machine Code with
Operating System

3GL With
Operating System

3GL With
Middleware

Level of
Abstraction

Generators

Machine Code

Software Industrialization and the New IT- © 2003 David Frankel Consulting 17

Multi-Tiered Enterprise Architecture With
EAI Adapters & Message Management

Means A accesses BA B

Mainframe
DBs

DBs on other servers
Other Legacy

Systems
Packaged Applications

USER TIER (a.k.a. Client Tier)
User Presentation

ENTERPRISE TIER (a.k.a. Business Tier)
Encapsulated Business Logic

Servers

WORKSPACE TIER (a.k.a Interaction Tier)
User Interaction Logic

Servers

RESOURCE TIER (a.k.a Integration Tier)

Application adapters, message
routers, filters, & transformers

Resource adapters (e.g.
object-relational mappings)

Software Industrialization and the New IT- © 2003 David Frankel Consulting 18

Architectural Separation
Application Viewpoint vs. Infrastructure

Middleware
Implementations

�Below the Line�

3GL Languages
Compiler Implementations

Middleware
Service
APIs

3GL Languages
�Editors
�Debuggers
�Programmatic and
user interfaces to
compilers

Applications

�Above the Line�

Middleware
Configuration Languages

e.g. EJB Deployment
Descriptor

1The �above and below the line� concept was developed by Oliver Sims

Water Line1

Software Industrialization and the New IT- © 2003 David Frankel Consulting 19

Model-Driven Enterprise Architecture

� UML �out of the box� does not support modeling
enterprise-centric computing
� Tiers

� Middleware layers

� Distributed components

� Security

� A model-driven enterprise architecture requires
modeling languages to support it
� Distinct but coordinated

� For different system aspects and levels of abstraction

� Use UML profiles and MOF to define the languages

Software Industrialization and the New IT- © 2003 David Frankel Consulting 20

MDA Architectural Resources
Above and Below the Line

Generator
Implementations

(Generators conform
to mappings)

Modeling Language
Definitions

(language creator�s
Viewpoint)

Mappings of languages
to Technologies

(including application
of patterns)

Modeling Languages
�Editors (e.g. UML modeling tools)
�Programmatic and user interfaces to generators

* = At least partially standardized

Water Line

Applications

Software Industrialization and the New IT- © 2003 David Frankel Consulting 21

�Below the Line�

�Above the Line�

Pre-MDA With MDA

Applications Applications

Value Object
Pattern

Other Patterns Consistent
With the Architectural Style

Generator Generator

Value Object
Pattern

Other Patterns Consistent
With the Architectural Style

Pushing Pattern Knowledge Below the Line

Software Industrialization and the New IT- © 2003 David Frankel Consulting 22

Model-Driven Development vs.
Model Driven Architecture

� MDA includes model-driven development

� Also about model-driven deployment
� Currently deployment tools metadata is fragmented
� Little standardization

� Also about model-driven management (ops)
� Generating instrumentation from models of service-

level agreements (SLAs)

� Java Management Specification (JSR-77) provides
some standardization

Software Industrialization and the New IT- © 2003 David Frankel Consulting 23

Agenda

� The Demands of the Virtual Enterprise

� MDA: Industrializing Software

� Informal vs. Formal Modeling

� Future MDA Directions

Software Industrialization and the New IT- © 2003 David Frankel Consulting 24

Informal Models

� Informal modeling
� Used to sketch out basic concepts
� Advantage over typical box and line

diagrams because shapes and line types
have specific meanings

� Important, but can�t drive code generators
and dynamic execution engines
� Analogously, informal text can�t be compiled

and executed like 3GL text

Software Industrialization and the New IT- © 2003 David Frankel Consulting 25

Formal Models

� Precise
� Precision and detail are not the same!

� Computationally complete
� Missing properties and unresolved references

not acceptable

� 3GL analogy�
� an incomplete expression such as �a +� does not

compile

� An undeclared identifier does not compile

Software Industrialization and the New IT- © 2003 David Frankel Consulting 26

Business Information Model
Imprecise and Incomplete

CheckingAccount
<<BusinessEntity>>

minBalance : Money

Account
<<BusinessEntity>>

id : String
balance : Money

Customer
<<BusinessEntity>>

socialSecurityNum : String
name : String
address : String

1..n1..n

PreferredChecking
<<BusinessEntity>>

SavingsAccount
<<BusinessEntity>>

interestRate : Decimal

Software Industrialization and the New IT- © 2003 David Frankel Consulting 27

Business Information Model
Precise and Complete

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

CheckingAccount
<<BusinessEntity>>

minBalance : Money

Account
<<BusinessEntity>>

id : String
balance : Money

Customer
<<BusinessEntity>>

socialSecurityNum : String
name : String
address : String

1..n

1

+account

1..n

+customer
1

PreferredChecking
<<BusinessEntity>>

{disjoint}

Money
<<DataType>>

SavingsAccount
<<BusinessEntity>>

interestRate : Decimal

Software Industrialization and the New IT- © 2003 David Frankel Consulting 28

= composition (a.k.a. strong
aggregation)

Composition of Account by
Customer formally captures an
important business rule: An account
cannot be transferred from one
customer to another.

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

CheckingAccount
<<BusinessEntity>>

minBalance : Money

Account
<<BusinessEntity>>

id : String
balance : Money

Customer
<<BusinessEntity>>

socialSecurityNum : String
name : String
address : String

1..n

1

+account

1..n

+customer
1

PreferredChecking
<<BusinessEntity>>

{disjoint}

Invariant rule expressed in UML�s
Object Constraint Language (OCL)

Multiplicity could be
1 or 0..1, must be
specified

Disjoint means no instance can be an
instance of both subclasses.

Business Information Model
Precise and Complete

Money
<<DataType>>

Money data type is defined

SavingsAccount
<<BusinessEntity>>

interestRate : Decimal

Software Industrialization and the New IT- © 2003 David Frankel Consulting 29

A Formal Model of an Abstract Business
Service

FundsXFer
<<BusinessService>>

XFerFromChecking(in fromAcct : CheckingAccount, in toAcct : SavingsAccount, in amount : Double) : void

context FundsXFer::XFerFromChecking (fromAcct : CheckingAccount, toAcct : SavingsAccount) : void
pre:
 --There must be sufficent funds in the checking account to support the transfer
 fromAcct.balance >= amount
pre:
 --The checking account and the savings account must belong to the same customer
 fromAccount.customer = toAccount.customer

post:
 --The balance of the checking account is reduced from its orginal amount by the amount of the transfer
 fromAcct.balance = fromAcct.balance@pre - amount
post:
 --The balance of the savings account is increased from its original amount by the amount of the transfer
 toAcct.balance = toAcct.balance@pre + amount

mailto:fromAcct.balance@pre
mailto:toAcct.balance@pre

Software Industrialization and the New IT- © 2003 David Frankel Consulting 30

Contracts, Reuse, and Interoperability

� �Connecting the dots�
� Makes the specification more complete
� Flushes out design flaws

� Interoperability among components is
difficult when contract not well understood

� Formal contract increases the degree of
semantic interoperability
� Regardless of whether code is generated from

the contract
� Semantic interoperability required for B2Bi

� Provides a �gold standard� for people who
speak different human languages

Software Industrialization and the New IT- © 2003 David Frankel Consulting 31

Value Chain Contract
How Clear?

?

Software Industrialization and the New IT- © 2003 David Frankel Consulting 32

Mapping the Business Information Model
to XML

�
<!ELEMENT Bank.Customer.id (#PCDATA | XMI.reference)* >
<!ELEMENT Bank.Customer.lastName (#PCDATA | XMI.reference)* >
<!ELEMENT Bank.Customer.firstName (#PCDATA | XMI.reference)* >
<!ELEMENT Bank.Customer.socialSecurityNum (#PCDATA |
XMI.reference)*>
�

Class Model -XML
Mapping Rules

Produce

Platform-
Independent

Model
XML DTD (or Schema)

SavingsAccount

interestRate : Float

<<BusinessEntity>>
CheckingAccount

minBalance : Float

<<BusinessEntity>>

Account
id : String
balance : Float

<<BusinessEntity>>

Customer

id : String
lastName : String
firstName : String
socSec# : String

<<BusinessEntity>>

1..*

1

+account

1..*

+customer1

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

{disjoint }

Customer

id : String
lastName : String
firstName : String
socialSecurityNum : String

<<BusinessEntity>>

Software Industrialization and the New IT- © 2003 David Frankel Consulting 33

Mapping the Business Service Model to
WSDL

FundsXFer

XFerFromChecking(in fromAcct : CheckingAccount, in toAcct : SavingsAccount, in amount : Money, out fromAcctBal : Money, out toAcctBal : Money)

<<BusinessService>>

PortTy pe Mess ageOperation

0..1

1

+input
0..1

1

0..1

1

+output
0..1

1

0..n

1 +operation

{ordered}

0..n

+portTy pe

1

Software Industrialization and the New IT- © 2003 David Frankel Consulting 34

Parameterized Mappings

CheckingAccount

minBalance : Money

<<BusinessEntity>>

Account

id : String
balance : Money

<<BusinessEntity>>

Customer

socialSecurityNum : String
name : String
address : String

<<BusinessEntity>>

1..n

1

+account

1..n

{href = true}

+customer1
{enforceMaximumMultiplicity = true}

PrefferedChecking
<<BusinessEntity>>

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

{disjoint}

SavingsAccount
<<BusinessEntity>>

interestRate : Decimal

Software Industrialization and the New IT- © 2003 David Frankel Consulting 35

Agenda

� The Demands of the Virtual Enterprise

� MDA: Industrializing Software

� Informal vs. Formal Modeling

� Future MDA Directions

Software Industrialization and the New IT- © 2003 David Frankel Consulting 36

Related Technologies

� Aspect-Oriented Modeling
� Product Line Practices
� Intentional Programming
� Generative Programming
� Key book: Generative Programming, Krzysztof

Czarnecki and Ulrich W. Eisenecker

� Microsoft modeling directions
� Key book: Software Factories: Assembling

Applications with Patterns, Models,
Frameworks and Tools, Jack Greenfield et al
(H1�04)

Software Industrialization and the New IT- © 2003 David Frankel Consulting 37

Aspect-Oriented Modeling

� Separating different aspects of a system at
design time
� Related to Multidimensional Separation of Concern

� An approach to separation of concern
� Addresses �code tangling� problem

Functional
Business

Semantics

Security

Transactional
Behavior

Persistence

Identity

Logging
Service
Level

Agreements

Statefulness

Reentrancy

Software Industrialization and the New IT- © 2003 David Frankel Consulting 38

Product Line Practices

� Product Line
� ��a set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common
set of core assets in a prescribed way. ��Carnegie Mellon
Software Engineering Institute

� Core Asset Development
� Capture domain knowledge in the form of reusable assets

� Define the scope of the domain
� Model the domain
� Develop components
� Define an architecture

� Production Plan
� How to produce systems using the core assets

� Product Development
� Uses core assets according to the production plan
� Creates individual products

Software Industrialization and the New IT- © 2003 David Frankel Consulting 39

Intentional Programming

� Objective: �Make the source look like the design�
� Programming via intentions
� High-level abstractions

� Active Source
� Knows how to compile itself, support editing, rendering,

and debugging
� Behaviors called at programming time

� Source graph
� Each abstract syntax tree (AST) node has a link to its

metadata
� The primary representation that plug-in modules deal with

� Not text or graphics vectors

� Transformations from one level of abstraction to
another

Charles Simonyi�s new company: Intentional Software

Software Industrialization and the New IT- © 2003 David Frankel Consulting 40

Generative Programming (GP)
� Synthesis of
� Aspect-Oriented Modeling
� Product Line Practices
� Intentional Programming

� Product Line Practices extended to include
specifying Domain-Specific Languages (DSLs) as
core assets for a product line

� Different DSLs for different aspects of the system
� Generators encapsulate product line knowledge
� Transformations from one level of abstraction to

another
� Extensible development environment based on

common technology for representing source
graphs in memory
� Capable of hosting active source for multiple DSLs

� Model Integrated Computing
� Vanderbilt Institute for Software Integrated Systems

Software Industrialization and the New IT- © 2003 David Frankel Consulting 41

Product Line Practices
Extended to Include Domain-Specific Languages

Reusable assets for the product line
Created via core asset development

Individual systems produced via product development

Individual
Product 1

Individual
Product n

Individual
Product 2 �

Production
Plan

The Sims �Water Line�

Specialized
Specification
Language(s)
i.e. DSL(s)

Components ArchitectureDomain Model

Software Industrialization and the New IT- © 2003 David Frankel Consulting 42

Generative Programming (GP)
Design Time Composability

� Component description in some DSL pulled
in at design-time
� Application-specific configuration added

� Generator produces tailor-made component
with minimal foot print

� Similar to the latest manufacturing
processes

� �Just-In-Time CBD�

Software Industrialization and the New IT- © 2003 David Frankel Consulting 43

MDA as a Standards Base for Product Lines
and Domain-Specific Languages

� Domain Specific Languages
� Languages defined via Meta Object Facility (MOF)

� MOF-HUTN specification for textual DSLs

� MOF lacks the ability to define graphical syntaxes

� Active Source
� MOF-defined language packaged in a modeling framework

with components, editor, generator, debugger, rendering
support\

� Source graphs in extensible development environment
for hosting active source
� JMI, driven by MOF metamodels of each DSL

� JMI provides link from an AST node to its metadata via MOF reflection

Software Industrialization and the New IT- © 2003 David Frankel Consulting 44

Active Source Graphs

Model
AST

Metamodel
AST

Generic Host
Environment

Active Source behavior
invoked at programming time

<<call>>

MOF-Based Metamodel
(e.g. CWM� Relational)

Abstract Syntax

Model
CWM Relational Data Model

Abstract Syntax Tree

Software Industrialization and the New IT- © 2003 David Frankel Consulting 45

MDA as a Standards Base for Product Lines
and Domain-Specific Languages (continued)

� Definitions of generators
� MOF Query View Transformations (QVT)

� Interchange of programs among tools when not �in-
memory�
� XMI, driven by MOF metamodels of each DSL

Software Industrialization and the New IT- © 2003 David Frankel Consulting 46

Eclipse Modeling Framework
as a GP Environment

� Already in place:
� Ecore for defining abstract syntax
� Java mapping for source graph (uses its own reflection,

not JMI-MOF reflection).
� XMI for interchange

� Still needed:
� Ability to define textual DSLs on top of abstract syntax,

using MOF-HUTN specification
� Ability to define graphical DSLs on top of abstract

syntax
� Implement over GEF
� DSTC project
� Extensions to MOF standards to follow

� Ability to define debugger plug-ins tied to abstract and
concrete syntax

Software Industrialization and the New IT- © 2003 David Frankel Consulting 47

MOF Industry Status
� New MOF-based initiatives
� Business Process Definition Metamodel (OMG)
� BPMI.org involved

� Business Rules Metamodel (OMG)
� Key people from business rules community involved

� Ontology Definition Metamodel (OMG)
� Key people from Semantic Web community involved

� Distributed Management Task Force (DMTF)
� Moving toward MOF-based metadata

� Model-Driven data transformations a huge
opportunity (CWM)�a killer app for MDA

� Microsoft committed to GP approach
� But not to MOF

� MOF-Eclipse alignment is important

Software Industrialization and the New IT- © 2003 David Frankel Consulting 48

Agenda Review

� The Demands of the Virtual Enterprise

� MDA: Industrializing Software

� Informal vs. Formal Modeling

� Future MDA Directions

	Software Industrialization
	Agenda
	Agenda
	Increased Complexity Facing IT
	Value Chain Driven Business�Rapid Assembly of Value Chains
	Issues
	Agenda
	MDA and Industrialization
	Bringing Model-Centrism to Intermediate Tiers, EAI and B2Bi
	Component-Based Development
	Design Patterns
	Automatic Pattern Replication
	Using Value Object Design Pattern to Set Attributes
	Slide327
	Other Advances Toward Efficiency
	Middleware Narrows the Abstraction Gap
	Multi-Tiered Enterprise Architecture With EAI Adapters & Message Management
	Architectural Separation�Application Viewpoint vs. Infrastructure
	Model-Driven Enterprise Architecture
	MDA Architectural Resources �Above and Below the Line
	Slide33
	Model-Driven Development vs. �Model Driven Architecture
	Agenda
	Informal Models
	Formal Models
	Business Information Model�Imprecise and Incomplete
	Business Information Model�Precise and Complete
	= composition (a.k.a. strong aggregation) Composition of Account by Customer formally captures an important business rule: An account cannot be transferred from one customer to another.
	A Formal Model of an Abstract Business Service
	Contracts, Reuse, and Interoperability
	Value Chain Contract�How Clear?
	Mapping the Business Information Model to XML
	Mapping the Business Service Model to WSDL
	Parameterized Mappings
	Agenda
	Related Technologies
	Aspect-Oriented Modeling
	Product Line Practices
	Intentional Programming
	Generative Programming (GP)
	Product Line Practices�Extended to Include Domain-Specific Languages
	Generative Programming (GP) �Design Time Composability
	MDA as a Standards Base for Product Lines and Domain-Specific Languages
	Active Source Graphs
	MDA as a Standards Base for Product Lines and Domain-Specific Languages (continued)
	Eclipse Modeling Framework �as a GP Environment
	MOF Industry Status
	Agenda Review

