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Increased Complexity Facing IT

Uniform 
User

Devices

Support Business 
Functions 

Within the Enterprise

Fat 
Clients

Web 
Clients

Wireless
Handhelds

Telephone
Keypads

Support Business 
Functions 

Within the Enterprise, C2B, and B2B

Complexity
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Value Chain Driven Business
Rapid Assembly of Value Chains

Building Contractor
Legal Services

Financing
Home Supplies

Title Services
Architecture
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Issues

� Building, updating, and integrating these 
complex distributed systems is labor-
intensive
� Easy to use a good application server in an

unscalable fashion

� Many projects fail
� Others have pointed this out
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MDA and Industrialization

� Accelerates the trend toward automating 
low-level programming

� Applies principles of industrial 
manufacturing to achieve efficiencies and 
automation
� Formal blueprints

� Components

� Patterns

� Crawl, walk, run�a gradual change
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Bringing Model-Centrism to 
Intermediate Tiers, EAI and B2Bi

� Part of general trend to raise the abstraction 
level

� Models as development artifacts
� Not simply blueprints for humans

� Already well-established for front and back 
ends
� WYSIWYG GUI modeling and data modeling

� Hand coding no longer predominates

� But tuning allowed

� Wizards vs. models
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Component-Based Development

� Interchangeable components and scientific 
management were the keys to the industrial 
revolution

� More than objects: Independently 
deployable

� Excellent source: Business Component 
Factory, by Peter Herzum and Oliver Sims

� Service Oriented Architecture
� Driven by value chain imperative
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Design Patterns

� Patterns at the technical level
� Such as Java Blueprints

� Best practices for implementing components or 
a set of interacting components

� Some patterns make sense at the level of 
business semantics
� Such as the Observer pattern (Gamma et al)
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Automatic Pattern Replication

� MDA generators encapsulate pattern 
knowledge
� And apply patterns automatically

� Technical patterns are the most amenable

� Repetitive hand-coding of each pattern instance is 
inefficient

� Patterns community is coming around to this view
� e.g. John Crupi

� Generators can enforce large scale patterns or 
architectural styles
� Richard Hubert, Convergent Architecture
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Using Value Object Design Pattern to 
Set Attributes

Client

Value
Object

2. One remote invocation
Façade
Object

1. Multiple local invocations

EJB
Component

3. Multiple local invocations
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Façade
Remote
Interface

Value
Object
Class

Generator

Bean
Interrface

Façade
Class

Bean
Class

= completely generated

= partially generated

SavingsAccount

interestRate : Float

<<BusinessEntity>>
CheckingAccount

minBalance : Float

<<BusinessEntity>>

Account

id : String
balance : Float

<<BusinessEntity>>

Customer

id : String
lastName : String
firstName : String
socSec# : String

<<BusinessEntity>>

1..*

1

+account

1..*

+customer1

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

{disjoint }

Model of Customer Entity 

A Generator Applying the Value Object Pattern



Software Industrialization and the New IT- © 2003 David Frankel Consulting 15

Other Advances Toward Efficiency

� Middleware
� Raises the abstraction level of the platform

� Declarative Specification
� e.g. setting transaction properties in component 

descriptors

� Enterprise Architecture
� Separation of concerns
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Middleware Narrows the Abstraction Gap

CheckingAccount

minBalance : Float

<<BusinessEntity>>

Account

id : String
balance : Float

<<BusinessEntity>>

Custom er

id : String

<<BusinessEntity>>

1..*

1

+account

1..*

+custom er1

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

SavingsAccount
<<Business Ent ity>>

Machine Code with 
Operating System

3GL With 
Operating System

3GL With 
Middleware

Level of 
Abstraction

Generators

Machine Code
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Multi-Tiered Enterprise Architecture With 
EAI Adapters & Message Management

Means A accesses BA B

Mainframe 
DBs

DBs on other servers
Other Legacy 

Systems
Packaged Applications

USER TIER (a.k.a. Client Tier)
User Presentation

ENTERPRISE TIER (a.k.a. Business Tier)
Encapsulated Business Logic

Servers

WORKSPACE TIER (a.k.a Interaction Tier)
User Interaction Logic

Servers

RESOURCE TIER (a.k.a Integration Tier)

Application adapters, message 
routers, filters, & transformers

Resource adapters (e.g. 
object-relational mappings)
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Architectural Separation
Application Viewpoint vs. Infrastructure

Middleware
Implementations

�Below the Line�

3GL Languages
Compiler Implementations

Middleware 
Service 
APIs

3GL Languages
�Editors
�Debuggers
�Programmatic and 
user interfaces to 
compilers

Applications

�Above the Line�

Middleware 
Configuration Languages

e.g. EJB Deployment
Descriptor

1The �above and below the line� concept was developed by Oliver Sims

Water Line1
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Model-Driven Enterprise Architecture

� UML �out of the box� does not support modeling 
enterprise-centric computing
� Tiers

� Middleware layers

� Distributed components

� Security

� A model-driven enterprise architecture requires 
modeling languages to support it
� Distinct but coordinated

� For different system aspects and levels of abstraction

� Use UML profiles and MOF to define the languages
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MDA Architectural Resources 
Above and Below the Line

Generator
Implementations

(Generators conform
to mappings)

Modeling Language
Definitions  

(language creator�s 
Viewpoint)

Mappings of languages
to Technologies

(including application 
of patterns)

Modeling Languages
�Editors (e.g. UML modeling tools)
�Programmatic and user interfaces to generators

* = At least partially standardized

Water Line

Applications
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�Below the Line�

�Above the Line�

Pre-MDA With MDA

Applications Applications 

Value Object
Pattern

Other Patterns Consistent
With the Architectural Style

Generator Generator 

Value Object
Pattern

Other Patterns Consistent
With the Architectural Style

Pushing Pattern Knowledge Below the Line
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Model-Driven Development vs. 
Model Driven Architecture

� MDA includes model-driven development

� Also about model-driven deployment
� Currently deployment tools metadata is fragmented
� Little standardization

� Also about model-driven management (ops)
� Generating instrumentation from models of service-

level agreements (SLAs)

� Java Management Specification (JSR-77) provides 
some standardization
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Informal Models

� Informal modeling
� Used to sketch out basic concepts
� Advantage over typical box and line 

diagrams because shapes and line types 
have specific meanings

� Important, but can�t drive code generators 
and dynamic execution engines
� Analogously, informal text can�t be compiled 

and executed like 3GL text 
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Formal Models

� Precise
� Precision and detail are not the same!

� Computationally complete
� Missing properties and unresolved references 

not acceptable

� 3GL analogy� 
� an incomplete expression such as �a +� does not 

compile

� An undeclared identifier does not compile
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Business Information Model
Imprecise and Incomplete

CheckingAccount
<<BusinessEntity>>

minBalance : Money

Account
<<BusinessEntity>>

id : String
balance : Money

Customer
<<BusinessEntity>>

socialSecurityNum : String
name : String
address : String

1..n1..n

PreferredChecking
<<BusinessEntity>>

SavingsAccount
<<BusinessEntity>>

interestRate : Decimal
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Business Information Model
Precise and Complete

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

CheckingAccount
<<BusinessEntity>>

minBalance : Money

Account
<<BusinessEntity>>

id : String
balance : Money

Customer
<<BusinessEntity>>

socialSecurityNum : String
name : String
address : String

1..n

1

+account

1..n

+customer
1

PreferredChecking
<<BusinessEntity>>

{disjoint}

Money
<<DataType>>

SavingsAccount
<<BusinessEntity>>

interestRate : Decimal
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= composition (a.k.a. strong 
aggregation)

Composition of Account by 
Customer formally captures an 
important business rule: An account 
cannot be transferred from one 
customer to another.

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

CheckingAccount
<<BusinessEntity>>

minBalance : Money

Account
<<BusinessEntity>>

id : String
balance : Money

Customer
<<BusinessEntity>>

socialSecurityNum : String
name : String
address : String

1..n

1

+account

1..n

+customer
1

PreferredChecking
<<BusinessEntity>>

{disjoint}

Invariant rule expressed in UML�s 
Object Constraint Language (OCL)

Multiplicity could be 
1 or 0..1, must be 
specified

Disjoint means no instance can be an 
instance of both subclasses.

Business Information Model
Precise and Complete

Money
<<DataType>>

Money data type is defined

SavingsAccount
<<BusinessEntity>>

interestRate : Decimal
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A Formal Model of an Abstract Business 
Service

FundsXFer
<<BusinessService>>

XFerFromChecking(in fromAcct : CheckingAccount, in toAcct : SavingsAccount, in amount : Double) : void

context FundsXFer::XFerFromChecking (fromAcct : CheckingAccount, toAcct : SavingsAccount) : void
pre: 
   --There must be sufficent funds in the checking account to support the transfer
   fromAcct.balance >= amount
pre:
   --The checking account and the savings account must belong to the same customer
   fromAccount.customer = toAccount.customer

post:
   --The balance of the checking account is reduced from its orginal amount by the amount of the transfer 
   fromAcct.balance = fromAcct.balance@pre - amount
post:
   --The balance of the savings account is increased from its original amount by the amount of the transfer
   toAcct.balance = toAcct.balance@pre + amount

mailto:fromAcct.balance@pre
mailto:toAcct.balance@pre
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Contracts, Reuse, and Interoperability

� �Connecting the dots�
� Makes the specification more complete
� Flushes out design flaws

� Interoperability among components is 
difficult when contract not well understood

� Formal contract increases the degree of 
semantic interoperability
� Regardless of whether code is generated from 

the contract
� Semantic interoperability required for B2Bi

� Provides a �gold standard� for people who 
speak different human languages
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Value Chain Contract
How Clear?

?



Software Industrialization and the New IT- © 2003 David Frankel Consulting 32

Mapping the Business Information Model 
to XML

�
<!ELEMENT Bank.Customer.id (#PCDATA | XMI.reference)* >
<!ELEMENT Bank.Customer.lastName (#PCDATA | XMI.reference)* >
<!ELEMENT Bank.Customer.firstName (#PCDATA | XMI.reference)* >
<!ELEMENT Bank.Customer.socialSecurityNum (#PCDATA |  
XMI.reference)*>
�

Class Model -XML 
Mapping Rules

Produce

Platform-
Independent

Model
XML DTD (or Schema)

SavingsAccount

interestRate : Float

<<BusinessEntity>>
CheckingAccount

minBalance : Float

<<BusinessEntity>>

Account
id : String
balance : Float

<<BusinessEntity>>

Customer

id : String
lastName : String
firstName : String
socSec# : String

<<BusinessEntity>>

1..*

1

+account

1..*

+customer1

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

{disjoint }

Customer

id : String
lastName : String
firstName : String
socialSecurityNum : String

<<BusinessEntity>>
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Mapping the Business Service Model to 
WSDL

FundsXFer

XFerFromChecking(in fromAcct : CheckingAccount, in toAcct : SavingsAccount, in amount : Money, out fromAcctBal : Money, out toAcctBal : Money)

<<BusinessService>>

PortTy pe Mess ageOperation

0..1

1

+input
0..1

1

0..1

1

+output
0..1

1

0..n

1 +operation

{ordered}

0..n

+portTy pe

1
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Parameterized Mappings

CheckingAccount

minBalance : Money

<<BusinessEntity>>

Account

id : String
balance : Money

<<BusinessEntity>>

Customer

socialSecurityNum : String
name : String
address : String

<<BusinessEntity>>

1..n

1

+account

1..n

{href = true}

+customer1
{enforceMaximumMultiplicity = true}

PrefferedChecking
<<BusinessEntity>>

context PreferredChecking inv:

--Cannot go below the minBalance

balance >= minBalance

{disjoint}

SavingsAccount
<<BusinessEntity>>

interestRate : Decimal
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Related Technologies

� Aspect-Oriented Modeling
� Product Line Practices
� Intentional Programming
� Generative Programming
� Key book: Generative Programming, Krzysztof 

Czarnecki and Ulrich W. Eisenecker

� Microsoft modeling directions
� Key book: Software Factories: Assembling 

Applications with Patterns, Models, 
Frameworks and Tools, Jack Greenfield et al 
(H1�04)
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Aspect-Oriented Modeling

� Separating different aspects of a system at 
design time
� Related to Multidimensional Separation of Concern

� An approach to separation of concern
� Addresses �code tangling� problem

Functional
Business 

Semantics

Security

Transactional 
Behavior

Persistence

Identity

Logging
Service
Level

Agreements

Statefulness

Reentrancy
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Product Line Practices

� Product Line
� ��a set of software-intensive systems that share a common, 

managed set of features satisfying the specific needs of a particular 
market segment or mission and that are developed from a common 
set of core assets in a prescribed way. ��Carnegie Mellon 
Software Engineering Institute

� Core Asset Development
� Capture domain knowledge in the form of reusable assets

� Define the scope of the domain 
� Model the domain 
� Develop components
� Define an architecture

� Production Plan
� How to produce systems using the core assets

� Product Development
� Uses core assets according to the production plan
� Creates individual products
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Intentional Programming

� Objective: �Make the source look like the design�
� Programming via intentions
� High-level abstractions

� Active Source
� Knows how to compile itself, support editing, rendering, 

and debugging
� Behaviors called at programming time

� Source graph
� Each abstract syntax tree (AST) node has a link to its 

metadata
� The primary representation that plug-in modules deal with

� Not text or graphics vectors

� Transformations from one level of abstraction to 
another

Charles Simonyi�s new company: Intentional Software
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Generative Programming (GP)
� Synthesis of
� Aspect-Oriented Modeling
� Product Line Practices
� Intentional Programming

� Product Line Practices extended to include 
specifying Domain-Specific Languages (DSLs) as 
core assets for a product line

� Different DSLs for different aspects of the system
� Generators encapsulate product line knowledge
� Transformations from one level of abstraction to 

another
� Extensible development environment based on 

common technology for representing source 
graphs in memory
� Capable of hosting active source for multiple DSLs

� Model Integrated Computing
� Vanderbilt Institute for Software Integrated Systems
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Product Line Practices
Extended to Include Domain-Specific Languages

Reusable assets for the product line
Created via core asset development

Individual systems produced via product development

Individual
Product 1

Individual
Product n

Individual
Product 2 �

Production
Plan

The Sims �Water Line�

Specialized 
Specification
Language(s)
i.e. DSL(s)

Components ArchitectureDomain Model
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Generative Programming (GP) 
Design Time Composability

� Component description in some DSL pulled 
in at design-time
� Application-specific configuration added

� Generator produces tailor-made component 
with minimal foot print

� Similar to the latest manufacturing 
processes

� �Just-In-Time CBD�
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MDA as a Standards Base for Product Lines 
and Domain-Specific Languages

� Domain Specific Languages
� Languages defined via Meta Object Facility (MOF)

� MOF-HUTN specification for textual DSLs

� MOF lacks the ability to define graphical syntaxes

� Active Source
� MOF-defined language packaged in a modeling framework

with components, editor, generator, debugger, rendering 
support\

� Source graphs in extensible development environment 
for hosting active source
� JMI, driven by MOF metamodels of each DSL

� JMI provides link from an AST node to its metadata via MOF reflection
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Active Source Graphs

Model 
AST

Metamodel 
AST

Generic Host
Environment

Active Source behavior
invoked at programming time

<<call>>

MOF-Based Metamodel
(e.g. CWM� Relational)

Abstract Syntax

Model 
CWM Relational Data Model

Abstract Syntax Tree
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MDA as a Standards Base for Product Lines 
and Domain-Specific Languages (continued)

� Definitions of generators
� MOF Query View Transformations (QVT)

� Interchange of programs among tools when not �in-
memory�
� XMI, driven by MOF metamodels of each DSL
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Eclipse Modeling Framework 
as a GP Environment

� Already in place:
� Ecore for defining abstract syntax
� Java mapping for source graph (uses its own reflection, 

not JMI-MOF reflection).
� XMI for interchange

� Still needed:
� Ability to define textual DSLs on top of abstract syntax, 

using MOF-HUTN specification
� Ability to define graphical DSLs on top of abstract 

syntax
� Implement over GEF
� DSTC project
� Extensions to MOF standards to follow

� Ability to define debugger plug-ins tied to abstract and 
concrete syntax
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MOF Industry Status
� New MOF-based initiatives
� Business Process Definition Metamodel (OMG)
� BPMI.org involved

� Business Rules Metamodel (OMG)
� Key people from business rules community involved

� Ontology Definition Metamodel (OMG)
� Key people from Semantic Web community involved

� Distributed Management Task Force (DMTF)
� Moving toward MOF-based metadata

� Model-Driven data transformations a huge 
opportunity (CWM)�a killer app for MDA

� Microsoft committed to GP approach
� But not to MOF

� MOF-Eclipse alignment is important
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